Course name :				
Software engineering				
Type of study:	Type of study:	Course code:		
Computer science	Full-time	C5_19		
Course characteristics:	Level:	Year: III		
Mandatory within the	First (B.Sc.)	Semester: V		
additional content				
Type of classes:	Hours per week:	ECTS points:		
lectures, laboratories	2 lect (exam), 2 lab	5 ECTS		

COURSE GUIDE

AIMS

- A1. To acquaint students with the course of the software development process, starting with the strategic phase, by setting requirements on the user side, until the final phase: testing and maintenance.
- A2. The acquisition by the the students practical skills in the software design.

PREREQUISITES

- 1 Knowledge of the mathematics and programming fundamentals.
- 2 Knowledge of the most popular programming paradigms: procedural and object-oriented.
- 3 Class programming skills.
- 4 Knowledge of the types of relationships between classes.
- 5 The ability to apply appropriate algorithms and data structures to solve tasks.
- 6 The ability to use various sources of information including instructions and technical documentation.
- 7 The ability individual work and work in the group.
- 8 The ability to properly present their own actions.

LEARNING OUTCOMES

- EE 1 has basic theoretical knowledge of the software design.
- EE 2 knows the trends in the field of design and development of the computer systems
- EE 3 is able to use the process of requirements engineering to the identification of the software requirements
- EE 4 is able to provide the software project in the form of documentation and can read this project
- EE 5 is able to use the selected software engineering techniques in the process of the software design with using the appropriate design patterns
- EE 6 knows the basic concepts of verification, validation and to automate testing of the software
- EE 7 is able to write unit tests
- EE 8 knows the methods of the software life cycle management and the basics of programming project management

CONTENT

Lectures	Hours
Lect. 1 - Software design models	2
Lect. 2 - The requirements engineering process	
Lect. 3 - Introduction to UML	
Lect. 4 - UML Structural diagrams	
Lect. 5 - UML Behavioral diagrams	
Lect. 6 - Object-oriented design	
Lect. 7 - Methods of identifying classes and objects in the designed project	
Lect. 8 - Software architecture	
Lect. 9 - Introduction to the Design Patterns	
Lect. 10 - The selected design patterns	
Lect. 11 - The process of verification and validation of the software	
Lect. 12 - Unit Tests	
Lect. 13 - Agile programming techniques	
Lect. 14 - Basics of manage the software projects	
Lect. 15 - Software configuration management	
LABORATORIES	
Lab. 1 - Introduction to the software engineering	2 2
Lab. 2 - Acquainted with CASE tools (Enterprise Architect)	
Lab. 3 - Specification of the requirements for the sample project	
Lab. 4 - Designing of the use cases based on the requirements specification	
Lab. 5 - The use case scenarios, alternative scenarios and exceptions	
Lab. 6 - The sequence diagrams for the use cases.	
Lab. 7 - The compounds of classes: generalization, association, aggregation	
and composition.	2
Lab. 8 – The class diagram	
Lab. 9 - Creation of the documentation for the source code	
Lab. 10 - The use of the UML diagrams in the software project	
Lab. 11 - Example implementations of the selected design patterns	
Lab. 12 – Using of the design patterns.	
Lab. 13 – Model – View - Controller	
Lab. 14 – Unit Tests	
Lab. 15 – Introduction to the Control Version Systems (CVS)	

TEACHING TOOLS

1. – lectures using multimedia presentations	
2. – blackboard and chalk or whiteboards and pens	
3. – laboratory guides	
4. – reports from laboratory activities	
5. – computers with CASE software (ie. Enterprise Architect) and IDE	

LITERATURE

E. Gamma, R. Helm, R. Jonhson, J. Vlissides, Design patterns: elements of	
reusable object-oriented softwar, Addison Wesley; 1 edition 1994	
R. Miles, K. Hamilton, <i>Learning UML 2.0</i> , O'Reilly Media; 1 edition 2006	
R. S. Pressman, Software Engineering: A Practitioner's Approach, McGraw-Hill	
Higher Education; 7 edition 2009	
I. Sommerville, Software Engineering, Pearson; 9 edition 2010	

G.Booch, J. Rumbaugh, J. Jacobson, *The Unified Modeling Language User,* Addison Wesley; 2 edition 2005

M. Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling Language (Object Technology Series), Addison Wesley; 3 edition 2003

S. McConnell, Code Complete: A Practical Handbook of Software Construction, Second Edition, Microsoft Press; 2nd edition 2004

TEACHERS

1. dr inż Grzegorz Michalski grzegorz.michalski@icis.pcz.pl

ADDITIONAL NOTES

Links to course unit teaching materials can be found on the http://icis.pcz.pl/~michalski website for current students.