module title: THEORY OF WELDING PROCESSES			
field of study:	type of study:	course code:	
Mechanical Engineering	full-time	S6_3-11	
course:	degree:	year: I	
Modelling & Simulation in Mechanics	Master (MSc)	semester: II	
type of classes: lecture, classes, laboratory	hours per week: 2L, 1C, 1Lab	No of ECTS credits: 5	

MODULE DESCRIPTION

TARGETS

- **T1.** Provide theory of the phenomena occurring in the welding arc and basics of the physiochemical bonding process.
- **T2.** Provide theory of construction of the welded joint and the phenomena accompanying the flow of heat during the welding process.
- **T3.** Acquisition by students practical skills weldability assessment and selection of basic materials and additives for various bonding methods.
- **T4.** Acquisition by students practical skills of calculation of heat flow, stress and welding distortions of welded joints.

PREREQUISITES & ADDITIONAL REQUIREMENTS

- **R1.** Fundamentals of materials science.
- **R2.** Fundamental of basic welding techniques.
- R3. Ability to perform mathematical operations to solve given tasks.
- R4. Capability of using source literature.
- **R5.** Capability of individual work and collaboration in a group.
- R6. Data analysis and presentation of results.

LEARNING OUTCOMES

- **LO1.** Knowledge concerning phenomena in the welding arc.
- LO2. Knowledge on thermal cycle of welding.
- LO3. Ability to calculate parameters of thermal cycle.
- LO4. Knowledge on metallurgical aspects of welding.
- **LO5.** Knowledge on construction of the welded joint.
- LO6. Knowledge on stress and distortion in the welded joints.
- **LO7.** Ability to predict the value of stress and welding deformation and knowledge on method of their minimizing.

LECTURE	hours
L1-2 - Basics - classification and types of welding processes.	
L3-6 - Characteristics of the welding arc and the phenomena occurring in the welding arc.	
L7-8 – The types of welding sources used in welding.	
L9-11 - Basic issues related to the flow of heat in welding.	3
L12-13 - Welding heat cycles – types and main parameters.	2
L14-17 - Metallurgical phenomena occurring during the welding process.	4
L18 -19 – Construction of welded joint – changes in the heat affected zone.	2
L20-21 - The formation and the distribution of stresses in the welded joint.	2
L22-23- Characteristics of welding distortions.	2
L24-27 - Types and causes of cracks in welded joints.	4
L28-30 - The concept of weldability, and methods of evaluation.	3

CLASSES	
Cla 1-5 - Calculation of the characteristic values of the thermal cycle of welding	5
Cla 6-9 – Calculation of the stress and welding distortion in welding joints.	4
Cla 10-11 - Analytical methods for the evaluation of weldability	2
Cla 12-13 – Assessment of propensity to crack in welded joints.	2
CLa 14-15 – Calculation of preheating temperature for welded joints.	2

LABORATORY	hours
Lab 1-2 – Analysis of the types of material transport in welding arc.	
Lab 3 - The evaluation of the arc blow effect	
Lab 4 - Arc flexibility test	
Lab 5-6 - Survey the effect of welding on the type and size of the welding distortion.	
Lab 7-9 - Study of the effect of welding heat input on the hardness of the HAZ	
Lab 10-11 - Experimental investigation of ability to brazing and soldering of different materials.	2
Lab 12-13 - Analysis of heating and cooling cycle of the basic materials used in welding	2
Lab 14-15 - Experimental analysis of processes of friction and electric resistance welding.	2

TEACHING TOOLS

Ē

1 - lecture with the use of multimedia presentations	
2 - experimental stands equipped with measuring instrumentation	
3 - computer laboratory, blackboard, calculator	

4 - instructions to laboratory exercises

SOURCE LITERATURE

- 1. Grong Ø.: Metallurgical modelling of welding. Michigan Institute of Materials, 1997
- 2. Granjon H.: Fundamentals of welding metallurgy. Abington Publishing ,1999
- 3. Hongyang Zang, Senkara J.: Resistance welding: Fundamentals and applications. Taylor&Francis Group, 2012
- 4. Feng Z.: Processes and mechanism of welding residual stress and distortion. Woodhead Publishing, 2005
- 5. Radaj D.: Heat Effects of Welding: Temperature Field, Residual Stress. Berlin Springer-Verlag, 1992
- 6. Radaj D.: Welding residual stresses and distortion : Calculation and measurement. Dusseldorf: Verlag feur Schweissen und verwandte Verfahren DVS-Verlag GmbH, 2003

TEACHERS

module coordinator: dr Marek Gucwa – <u>mgucwa@spaw.pcz.pl</u> academic teachers:

- dr Marek Gucwa <u>mgucwa@spaw.pcz.pl</u>
- dr Marcin Kukuryk <u>kukurykm@itm.pcz.czest.pl</u>