

CZĘSTOCHOWA UNIVERSITY of TECHNOLOGY FACULTY OF CIVIL ENGINEERING

FIELD OF STUDY: CIVIL ENGINEERING

COURSE DESCRIPTION

Subject				Cοι	irse code	Year Semes	-		
Structu	Structural Mechanics I				WB_BUD_D_I_MB1		=	4	
	Type of class				Level of studies		ГОТО		
Lecture	Classes	Laboratory	Project	Seminar	Exam	BSc programme		ECTS	
1	1	-	2	-	Е	intramural studies		6	
Specjalność KBI / TOZB / AwB			Profile of studies:			general			
					Departm	ent of Techno	ological Mechanic	S	
Unit:			Room	98	Phone / fax: +48 (34) 325 09 65				
			Assoc. Pro	of. Izabel	a Major, PhD imajor@bud.pcz.czest.pl				

I. SUBJECT CHARTER				
SUBJECT OBJECTIVE				
01	Knowledge of basic principles and concepts of structural mechanics			
02	The skills of preparing influence lines for statically determinate systems and the determination of the extreme function based on the influence line			
O 3	O3 Acquiring knowledge in the field of classification and resolution of statically determinate regimes			
PRE-REQUISITE REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES				

1 Knowledge of mechanics and strength of materials

2 Knowledge of mathematics in the field of mathematical analysis

3 Knowledge of basic concepts in the design of the bar

LEA	RNING OUTCOME					
S1	Has a theoretical knowledge of structural mechanics in the field of statically determinate systems					
Gene	General skills/abilities					
S2	Has the skill to use literature and other materials related to the engineering problem to be solved					
Basi	c engineering skills/abilities					
S3	Has the skill to preparing the influence line using the static method for statically determinate					
00	systems.					
S4	Has the skill to preparing the influence lines using the kinematic method for statically					
5	determinate systems					
Skill	s directly related to solving an engineering task					
S5	Has the skill to calculate the extreme functions based on influence lines					
S 6	Has the skill to calculate the displacements for statically determinate systems					
Pers	Personal and social competences					
S7	Able to work independently and in a team					

CONTENTS OF STUD	Y
	•

Type of classes – Lecture		Number of hours			
L1	L1 Introduction. Classification and characteristics of engineering structures, physical and mathematical model of structure - the calculation scheme.				
L2	Kinematic analysis of the structure. Examples.	1			
L3	Moving loads. Principles of preparation of the influence line - static method.	1			

C13	using the static method for arches and three-minged frames.	I
	Analytical solving of three-hinged arches. Preparation of the influence line using the static method for arches and three-hinged frames.	1
C11 C12	The use of virtual work equation to calculate the trusses displacements caused by mechanical and nonmechanical load (uneven temperature rise, inaccurate assembly, non-elastic subsidence supports)	2
C10	Preparation of influence lines using kinematic method for trusses.	1
C8 C9	Planar trusses, the general properties of the truss. Kinematic analysis of truss systems. Preparation of influence line for simple and complex plane trusses. Static method.	2
C 7	Test #1.	1
C6	Using the influence lines. Live loads on the influence line, determination of the worst case of load position on the structure.	1
C4 C5	Preparation of the influence line for functions (reactions, cross-section forces). Kinematic method for simple and continuous hinged beams.	2
C2 C3	Preparation of the influence line for functions (reactions, cross-section forces). Static method for simple and continuous hinged beams.	2
C1	Introduction to the course. Discussion of the conditions of gaining credit. Kinematic analysis of planar shield system.	1
Туре	of classes – Classes	Number of hours
	Total:	15
L15	Repetytorium.	1
L13 L14	and three-hinged truss arches. Influence lines of displacements.	1
L12	Curved beams, trusses beams, three-hinged arches, three-hinged frame	2
L11	Deformations of the truss. The principle of virtual work.	1
L9 L10	Influence lines for truss systems - static and kinematic method.	2
L8	Basic of theory of truss systems. Examples.	1
L7	Use of the influence lines. Influence lines in case of nodal loads.	1
L5 L6	Continuous beams. Principles of preparation of influence lines for continuous hinged beams.	2
L4	Kinematic method for influence line preparation. Principle of reciprocity of reactions and displacements (Rayleigh) and the principle of reciprocity of displacements (Maxwell).	1

P7	mechanical load.	
P8	Defense of project No. I. Project No. II - statically determinate truss – assumptions	2
P9 P10	Immutability of truss system. Cremona method and load balancing method. Ritter method (method of sections).	4
P11		
P12	Preparation of influence lines for reactions and forces of cross-section using static method. Checking using the influence lines the reactions and internal forces in cross-section.	4
P13	Calculation of extreme values of forces in the cross-section under the	
P14	moving load with a specific schema on the lower (upper) truss belt. Calculation of horizontal or vertical displacement and change the distance between the nodes under mechanical loads.	4
P15	Defense of project No. I.	2
	Total:	30

TEACHING TOOLS

1.	Lectures with audiovisual aids.
2.	Exercises with the use of audiovisual resources and board and chalk.
3.	Author's teaching aids
4.	Literature.
	1

METHODS OF ASSESSMENT (F – FORMATIVE, P – SUMMARY) F1 Assessment to prepare for classes F2 Rating advance of the projects carried out independently by the student in accordance with the approved schedule F2 F2 F3 F3

STUDENT'S WORKLOAD				
P4	Rating final exam in writing and orally.			
P3	Evaluation of practical knowledge in the field of design			
P2	Evaluation of the implementation of projects			
P1	Rating colloquia of credits			
F3	Evaluation of activity during the course			

L.p.	Activity	ECTS activity	
		hours	[ECTS]
1.	Classes – lecture	15	
2.	Contact hours with the teacher-related lectures.	10	
3.	Getting acquainted with the indicated literature.	15	
4.	Classes – practice.	15	
5.	Contact hours with the teacher-related practice.	10	
6.	Preparing for exercise.	10	
7.	Preparation for test #1.	10	6
8.	Preparation for test #2.	10	
9.	Classes – project.	30	
10.	Contact hours with teacher-related project.	10	
11.	Preparing for classes in design, execution of projects.	10	
12.	Preparing for the exam.	15	
	Total:	160	

BASIC AND SUPLEMENTARY LITERATURE 1. R. C. Coates, M. G. Coutie, F. K. Kong, Structural Analysis, CRC Press, 1990 2. Igor A. Karnovsky, Olga Lebed, Advance method of structural analysis book, Springer, 2010

Williams, A. Structural analysis in theory and practice. Butterworth-Heinemann is an imprint of Elsevier , 2009 HIBBELER, R.C. Structural analysis. Prentice-Hall, Inc., Singapore, 2006 4.

5.

MATRIX OF LEARNING OUTCOME CARRYING OUT

MATRIX OF LEARNING OUTCOME CARRING OUT							
Learning outcome for the course	Reference to the effect defined for the field of study	Objectives of the course	Contents of study	Teaching tools	Methods of assessment		
S-1	K_W05 K_W06	O1, O3	L1÷L14, C1	1, 2, 3, 4	F1, F3, P1, P4		
S-2	K_U22, K_U02	O1, O2, O3	L1÷L14, C1÷C6, C8÷C13, P1÷P15	1, 2, 3, 4	F1÷F3, P1÷P4		
S-3	K_U09	02, 03	L3, L5÷L7, L9, L10, L12÷L14, C2, C3, C8, C9, C12, C13, P11, P12	1, 2, 3, 4	F1÷F3, P1÷P4		
S-4	K_U09	O2, O3	L4÷L7, L9, L10, L12÷L14, C4, C5, C10, P2, P3	1, 2, 3, 4	F1÷F3, P1÷P4		
S-5	K_U09	O2, O3	L7, L9, L10, L12÷L14, C6,C8÷C10, P4, P5, P13, P14	1, 2, 3, 4	F1÷F3, P1÷P4		
S-6	K_U09	O2, O3	L11, L14, C10÷C12, P6, P7, P13, P14	1, 2, 3, 4	F1÷F3, P1÷P4		
S-7	K_K01, K_K02	O1, O2, O3	C1÷C15, P1÷P15	4	F1÷F3, P1÷P4		

II. METHODS OF ASSESSMENT – DETAILS		
MARKS	LEARNING OUTCOME	
S1		
2 (F)	The student does not understand the concept of statically determinate system and can not perform kinematic analysis.	
3 (E)	The student has an elementary knowledge of the statically determinate system and attempts to perform the correct kinematic analysis of a simple system	
3,5 (D)	The student has an elementary knowledge of statically determinate systems and can perform kinematic analysis of a simple system	
4 (C)	The student has an elementary knowledge of statically determinate systems and is able to perform kinematic analysis of simple and selected complex systems	
4,5 (B)	The student has an elementary knowledge of statically determinate systems and is able to perform kinematic analysis of simple and complex systems	
5 (A)	The student has a very good knowledge of the statically determinate system and is able to flawlessly perform kinematic analysis of all sorts of complex systems	
S2		
2 (F)	The student does not know the basic literature necessary for solving tasks in the field of structural mechanics statically determinate systems	
3 (E)	The student knows superficially the basic literature but cannot take full advantage of it	
3,5 (D)	The student knows the basic literature and attempts to use it correctly	
4 (C)	The student knows the basic literature and can use it in solving the basic tasks	
4,5 (B)	The student knows the basic literature and can use it in solving basic and complex tasks	
5 (A)	Students is fluent in literature and can fluently use it for all tasks to be solved	
S3		

2	The student understands how to prepare the influence line using a static method but he can	
(F)	not properly begin the task	
3	The student can solve simple task consisting of preparing a influence line using a static	
(E)	method, however, the solution contains errors	
3,5	The student can solve flawlessly simple task consisting of preparing a influence line using a	
(D)	static method	
4	The student can solve flawlessly simple and selected complex task consisting of preparing a	
(C)	influence line using a static method	
4,5	The student can solve simple and complex task consisting of preparing a influence line using	
(B)	a static method	
5	The student can solve flawlessly simple and complex task consisting of preparing a influence	
(A)	line using a static method	
S4		
2	The student understands how to prepare the influence line using a kinematic method but he	
(F)	can not properly begin the task	
3	The student is able to solve simple task consisting of preparing a influence line using a	
(E)	kinematic method, however, the solution contains errors	
3,5	The student is able to solve flawlessly simple task consisting of preparing a influence line	
(D)	using a kinematic method	
4	The student is able to solve flawlessly simple and selected complex task consisting of	
(C)	preparing a influence line using a kinematic method	
4,5	The student is able to solve simple and complex task consisting of preparing a influence line	
(B)	using a kinematic method	
5	The student is able to solve flawlessly simple and complex task consisting of preparing a	
(A)	influence line using a kinematic method	
	S5	
2	The student understands how to calculate the extreme value of the function but he can not	
(F)	properly begin the task	
3		
(E)	The student is able to solve simple task however, the solution contains errors	
3,5	The student is able to solve flawlessly simple task consisting of the calculation of the extreme	
(D)	value of function	
4	The student is able to solve flawlessly simple and selected complex task consisting of the	
	calculation of the extreme value of function	
(C)		
4,5	The student is able to solve simple and complex task consisting of the calculation of the	
(B)	extreme value of function	
5	The student is able to solve flawlessly simple and complex task consisting of the calculation	
(A)	of the extreme value of function	
S6		
2	The student understands how to calculate the displacement but he can not properly begin the	
(F)	task	
3	The student is able to solve simple task however, the solution contains errors	
(E)	· ·	
3,5	The student is able to solve flawlessly simple task consisting of the calculation of	
(D)	displacement	
4	The student is able to solve flawlessly simple and selected complex task consisting of the	
(C)	calculation of displacement	
4,5	The student is able to solve simple and complex task consisting of the calculation of	
(B)	displacement	
5	The student is able to solve flawlessly simple and complex task consisting of the calculation	
(A)	of displacement	
S7		
2	-	
(F)	The student is not able to work individually or in a team	
3	Students is able to work individually with the teacher help, in the teamwork he is conflicting	
(E)	and he delays the work of the team	
(⊑) 3,5	Students is able to work individually with the teacher help, in the teamwork he is conflicting	
(D)	but he is trying not to delay teamwork	
	שמנ חס זס נו אווין ווטר נט טבומא נבמווזייטות	

4 (C	The student is able to work individually or in a team, he is systematic but not too creative	
4,: (B		
5 (A	···· ·································	
III. OTHER USEFUL INFORMATIONS ABOUT THE SUBJECT		
1.	Information, where and how students may acquaint with literature, author's teaching aids and others: according to the type of materials: According to the type of material – in the classroom, in the teacher's office and university or faculty library	
2.	Information about the place of classes: Show-case in the Faculty of Civil Engineering and faculty www page.	
3.	Information about time of classes (day and hour): Show-case in the Faculty of Civil Engineering and faculty www page.	
4.	Information about consultations (place and hours): 2 times a week in the teacher's office.	