Course name :

Statistical linear models and their applications

Type of study:	Type of study:	Examination:
Informatics and/or	Full-time	Assignment
mathematics		,
Course characteristics:	Level:	Year:
Compulsory	B.Sc.	Full year
Type of classes:	Hours per week:	ECTS points:
lectures, tutorials	2 lect, 2 tut	5 ECTS

COURSE GUIDE

COURSE OBJECTIVE

- C1. To provide students with mathematical foundation to linear regression modelling
- C2. To present various real-world applications of this abstract mathematical theory.
- C3. To equip students with knowledge which is sufficient to recognize and assess archetypal modelling situations in complicated real-world settings.

PREREQUISITES

- 1. Course of elementary algebra, in particular matrix calculus.
- 2. Course of the calculus of one and several variables (course of the mathematical analysis).
- 3. Fundamental knowledge about probability theory and basics of statistical inference
- 4. Ability to work independently and in a group.
- 5. Ability to correctly interpret and present their own activities.

LEARNING OUTCOMES

- L 1 student is familiar with the mathematical theory of statistical linear models and its extensions
- L 2 student is able to independently formulate and solve basic real-world regression modeling problems,
- L 3 student is able to use any developed regression model in order to describe various features of the underlying real-world phenomenon.

CONTENT

Lectures	Hours
1. Introductory mathematics – some facts and terminology	
(Matrix manipulations, quadratic forms, s-fields, measurable functions, probability	
basics, random vectors and their distributions)	
2. Conditional expectations. Regression.	4
3. Linear regression models - The least squares theory.	4
4. Linear regression models – verification and validation.	4
5. Regression analysis – other approaches (Least absolute deviations, ridge	
regression, Bayes approach, min-max approach, other approaches)	
6. Regression modelling practice – linear models vs. data in hand	4
7. Regression modelling practice – nonlinear models	4

8. Modelling of economic and industrial problems: case studies	
TUTORIALS	
1. Linear Algebra	2
2. Basic probability theory	2
3. Statistical inference basics	2
4. Measure theory in practice	2
5. Conditional expectations calculus	2
6. Least squares estimators	2
7. Testing hypothesis about the model restrictions	4
8. Testing hypothesis about assumptions	
9. Data analysis: Outliers and leverage points	
10. Alternative methods of regression modelling.	
11. Nonlinear models	

DIDACTIC RESOURSES, TEACHING METHODS and LEARNING ACTIVITIES

1 Multimedia presentations
2. Electronic lecture notes
3. Problem sets for students
4. Traditional face-to-face, blackboard supported tutorials
5. Computer packages for statistical modelling (Maple, Statistica)

LITERATURE

Lecture Notes.

Rao C.R. Linear Statistical Inference and its applications, Wiley, 1972_

Rao C.R., H.Toutenberg. Linear Models. Least Squares and Alternatives, Springer, 1999

Rawlings J.O., Pantula, S.G., Dickey D.A. Applied Regression Analysis. A Research Tool, Springer, 2001

Frees E.W., Data analysis using regression models - the business perspective, Prentice-Hall Inc., 1996

Greene W. H. Econometric Analysis, Prentice Hall; 2002.

TEACHERS

1. dr hab. inż. Andrzej Grzybowski , CUT professor <u>andrzej.grzybowski@im.pcz.pl</u>

ADDITIONAL NOTES

Links to course unit teaching materials can be found on the <u>http://www.pcz.pl/english/ects-subjects</u> website for current students.