Subject (course) name: Signal I	Processing		
Programme: Electronics and Telecommunication Specialty:		Subject code: 9K	
		Title graduate: Engineer	
Type of course: obligatory	Course level: First-cycle studies	Year: II Semester: IV Semester: summer	
Form of classes: Lectures, Classes, Labs, Seminar, Project	Number of hours per week: 2L, 0C, 2Lab, 0, 0	Credit points: 4 ECTS	

GUIDE TO SUBJECT

SUBJECT OBJECTIVES

- C1. Provide students with knowledge covering elements of signal theory and signal processing in the analogue circuits and discrete-time systems.
- C2. Acquisition by the students ability to use acquired knowledge during lectures for solving signal processing.
- C3. The acquisition of skills by the students description and analysis of signals and their processing.
- C4. Acquisition by students practical skills of computer use environment Matlab / Simulink to analyse the signals and their processing.

SUBJECT REQUIREMENTS

- 1. Knowledge and skills in mathematics, in the field of linear ordinary differential equations and operators of the methods of solving them.
- 2. Knowledge and skills in the subject "Circuits and Signals."
- 3. Ability to use a computer environment Matlab / Simulink.
- 4. The ability to use literature and online resources.

LERNING OUTCOMES

- EK 1 The student has knowledge covering elements of signal theory and signal processing in the analogue circuits and discrete-time systems.
- EK 2 Student is able to solve tasks of signal processing.
- EK 3 Student is able to describe and analyse the signals and processes of their processing.
- EK 4 The student can take advantage of the computing environment Matlab to analyse the signals and their processing.

SUBJECT CONTENT

Form of classes - lectures

Торіс	Hours
W1 – Introduction. Classification and mathematical models of signals.	2

W 2 – Dirac delta and sampling signals. Analogue-to-digital and digital-to-analogue.	2
W 3 – The periodic signals. Fourier series. Properties of Fourier series. The	2
spectrum of the signal.	
W 4 – Fourier transform. Properties of Fourier transforms. Spectral density of the	2
signal.	
W 5 – Sampling theorem.	2
W 6 – Mathematical models of systems.	2
W 7 – Linear stationary systems. Laplace Transform.	2
W 8 – The transmittance of the system. poles and zeroes transmittance	2
W 9 – Stability of the SLS. The criteria for stability.	2
W 10 – Examples of selected SLS systems. analogue filters.	2
W 11 – Diagrams and equations systems with discrete time. Transformation of Z. The	2
basic properties of the transformation of Z.	
W 12 – Applying the Restatement Z to solving differential equations.	2
W 13 – The stability of systems with discrete time. The criteria for stability.	2
W 14 – The transmittance. Finite systems and infinite impulse response. Frequency	2
characteristics. Basics of digital filtering.	
W 15 – Simulation of analogue circuits. The simulator characteristics of impulse. The	2
simulator frequency response. Differentiation simulators.	
Total	30

Form of classes – laboratory

Торіс	Hours
L1 – Introduction to the Matlab.	2
L 2 – Determination of parameters and waveforms of signals.	2
L 3 – The survey spectra of analog signals.	2
L 4 – The survey spectra of discrete-time signals.	2
L 5 – Study the consequences of the theorem of sampling signals.	2
L 6 – Introduction to Simulink.	2
L7 – Determination of the response set.	2
L 8 – Determination of system response in transient state.	2
L9 – Examination of the stability of the system with feedback.	2
L 10 – Examination Butterworth and Chebyshev filters	2
L 11 – Solving differential equations.	2
L 12 – Examination of the stability of the discrete time systems	2
L 13 – examination of frequency characteristics.	2
L 14 – RL circuit simulation.	2
L 15 – Final test.	2
Suma	30

STUDY METHODS

1. Lectures with use of multimedia presentations.

- 2. Lab experiments in sections (two or three students). Computer analysis.
- 3. Discussion during the course and individual consultations.

EDUCATIONAL TOOLS

1. Audiovisual equipment

- 2. Lab instructions
- 3. Computer lab

4. Matlab software

METHODS OF ASSESMENT (F – Forming, P – Summary)

F1. Validation of the results of computer analyses in the laboratory and timely preparation of reports on the subsequent laboratory.

P1. Lecture - written exam.

P2. Laboratory classes - the average of the ratings for laboratory exercises 50% and 50% of the final test.

STUDENT WORKLOAD

Form of activity Averaged workload (hours)

		[h]	Σ[h]	ECTS
Participation in class activities	lectures	30	60	2
	labs	30	00	2
Preparation for tutorials (reading literature)		10		
Preparation for labs		10		
Preparation of lab reports		15	60	2
Preparation for tests		5		
Preparation for exam		20		
Total			120	4

A. BASIC READING

1. Paolo Prandoni and Martin Vetterli: Signal Processing for Communications.

http://www.sp4comm.org/docs/sp4comm_corrected.pdf

2. Boashash, Boualem, ed. Time frequency signal analysis and processing a comprehensive reference (1 ed.). Amsterdam: Elsevier., 2003.

3. Richard G. Lyons: Understanding Digital Signal Processing (3rd Edition). Prentice Hall. 2010.

B. FURTHER READING

 Smith S.W.: The Scientist and Engineer's Guide to Digital Signal Processing. http://www.dspguide.com/pdfbook.htm.
Owen M.: Practical Signal Processing. Cambridge University Press. 2012.

Learning objectives	In relation to the learning outcomes specified for the field of study	Subject objectives	Study methods	Methods of assessment
EK1	K_W14	C1	lecture	P1
EK2	K_U08 K_W14	C2	lecture laboratory	P1 P2
EK3	K_U07 K_W14	C3	lecture laboratory	P1 P2
EK4	K_U07 K_U08 K_U02 K_K04	C2,C3,C4	laboratory	F1 P2
EK5	K_W09 K_W14 K_U07	C1	lecture	P1

II. EVALUATION

EK 1 - The student has knowledge covering elements of signal theory and signal processing

in the analogue circuits and discrete-time systems.

- EK 2 Student is able to solve tasks of signal processing.
- EK 3 Student is able to describe and analyse the signals and processes of their

processing.

EK 4 – The student can take advantage of the computing environment Matlab to analyse the signals and their processing.

Grade	Outcome
EK1	The student has knowledge covering elements of signal theory and signal processing in the analogue
	circuits and discrete-time systems.
2 (F)	The student does not have an elementary knowledge covering elements of signal theory and signal

	processing in the analogue circuits and discrete-time systems.
3 (E)	The student has an elementary knowledge covering elements of signal theory and signal processing
. ,	in the analogue circuits and discrete-time systems.
4 (C)	The student has sufficient knowledge covering elements of signal theory and signal processing in the
. ,	analogue circuits and discrete-time systems and enables him to describe and analyse the signals and
	processes of their processing.
5 (A)	The student has a thorough knowledge covering elements of signal theory and signal processing in
	the analogue circuits and discrete-time systems and enable it in different ways to describe and
	analyse the signals and processes of their processing.
EK2	Student is able to solve tasks of signal processing.
2 (F)	The student is not able to solve simple tasks of signal processing.
3 (E)	The student is able to formulate equations for solving the problem of signal processing, but it can not
	solve them.
4 (C)	Student is able to solve tasks of signal processing, but it can not properly interpret the results.
5 (A)	The student is able to solve various tasks of signal processing methods and correctly interpret the
	results.
EK3	Student is able to describe and analyse the signals and processes of their processing.
2 (F)	The student is not able to describe and analyse simple signals and their processing.
3 (E)	Student is able to describe and analyse some simple signals and processes of their processing.
4 (C)	Student correctly describes and analyses the signals and processes of their processing.
5 (A)	Student, in various methods, correctly describes and analyses and processes the signals of the
	processing by referring to the description of various embodiments and various methods of analysis.
EK4	The student can take advantage of the computing environment Matlab to analyse the signals and their
	processing.
2 (F)	The student is unable to properly use a computer environment Matlab / Simulink to analyse the
-	signals and their processing.
3 (E)	The student only to a limited extent able to use the computing environment Matlab / Simulink to
	analyse only simple signals and their processing.
4 (C)	Student is able to properly utilize the computing environment Matlab / Simulink for analysis in the
	laboratory exercises selected signals and their processing.
5 (A)	Student is able to take full advantage of the possibilities of computer environment Matlab / Simulink
	for signal analysis and treatment processes, using different software variants of the task.

III. OTHER USEFUL INFORMATION

- 1. All information for students on the schedule are available on the notice board and on the website: <u>www.el.pcz.pl</u>
- 2. Information on the consultation shall be provided to students during the first lecture and will be placed on the website <u>www.el.pcz.pl</u>
- 3. Terms and conditions of credit courses will be provided to students during the first lecture