Course name:						
Neural networks & machine learning						
Field of study:	Туре	of study:	Sourse code:			
Computer science	Full-time		CIDM2_01			
Course characteristics:		Level:	Year: I			
Mandatory within the additional		Second (M.Sc.)	Semester: II			
content		Computational Intelligence and Data Mining				
Type of classes:		Hours per week:	ECTS points amount:			
lectures, exercises, project		2 lect, 1 ex, 2 proj	5 ECTS			

COURSE GUIDE

AIMS

- A1. Introducing the students to the basic methods of neural networks and machine learning.
- A2. Obtaining by the students the practical skills in solving various problems by making use of neural networks and machine learning.

PREREQUISITES

- 1. The knowledge in the field of the mathematics.
- 2. The basic knowledge in the field of the mathematical statistics.
- 3. The basic knowledge in the field of probability theory.
- 4. The basic knowledge and skills in computer programming.
- 5. The skills to use different sources of information and technical documentation.
- 6. The skills of working alone and in the group.
- 7. The skills of correct interpretation and presentation of his/her own activity.

LEARNING OUTCOMES

- EE 1 Students possess the basic theoretical knowledge in the field of modeling, simulation and classification by making use of machine learning and neural networks.
- EE 2 Students are able to solve various problems of pattern recognition, approximation and prediction.
- EE 3 Students are able to use the modem methods for modeling different types of systems.
- EE 4 Students are familiar with principles of computational intelligence.

CONTENT

Lectures		Hours
Lect. 1	Neuron and its models, structure and functioning of a single neuron, perceptron	
Lect. 2	Adaline model, Sigmoidal neuron model, Hebb neuron model	
Lect. 3	Backpropagation algorithm, Backpropagation algorithm with momentum term	2
Lect. 4	Variable-metric algorithm , Levenberg-Marquardt algorithm, Recursive least squares method	2
Lect. 5	Hopfield neural network , Hamming neural network	2
Lect. 6	BAM network , Self-organizing neural networks with competitive learning, WTA neural networks, WTM neural networks, ART neural networks	2

Lect. 7	Radial-basis function networks. Probabilistic neural networks 2	2	
Lect. 8	Data clustering methods- HCM algorithm, FCM algorithm. PCM algorithm	2	
Lect. 9	Gustafson-Kessel algorithm, FMLE algorithm. Clusteringvalidity measures		
Lect. 10	Support vector machines for classification 2		
Lect. 11	Support vector machines for regression 2		
Lect. 12	Decision trees- ID3		
Lect. 13	Decision trees- C4.5		
Lect. 14	Fuzzy decision trees		
Lect. 15	Principal Component Analysis	2	
Exercises		Hours	
Ex. 1	Neuron and its models, structure and functioning of a single neuron,	1	
	perceptron		
Ex. 2	Adaline model, Sigmoidal neuron model, Hebb neuron model	1	
Ex. 3	Backpropagation algorithm, Backpropagation algorithm with momentum term		
Ex. 4	Variable-metric algorithm, Levenberg-Marquardt algorithm, Recursive least squares method	1	
Ex. 5	Hopfield neural network , Hamming neural network	1	
Ex. 6	BAM network , Self-organizing neural networks with competitive learning, WTA neural networks, WTM neural networks, ART neural networks	1	
Ex. 7	Radial-basis function networks, Probabilistic neural networks	1	
Ex. 8	Data clustering methods- HCM algorithm, FCM algorithm. PCM algorithm	1	
Ex. 9	Gustafson-Kessel algorithm, FMLE algorithm. Clustering validity measures	1	
Ex. 10	Support vector machines for classification	1	
Ex. 11	Support vector machines for regression	1	
Ex. 12	Decision trees- ID3	1	
Ex. 13	Decision trees- C4.5	1	
Ex. 14	Fuzzy decision trees	1	
Ex. 15	Principal Component Analysis	1	
Project		Hours	
Proj. 1	Designing multilayer neural network	2	
Proj. 2	Designing Hopfield neural network	2	
Proj. 3	Designing Hamming neural network	2	
Proj. 4	Designing WTA neural network	2	
Proj. 5	Designing radial- basis neural network	2	
Proj. 6	Designing probabilistic neural network	2	
Proj. 7	Designing decision trees ID3	2	
Proj. 8	Designing decision trees C4.5	2	
Proj. 9	Designing fuzzy decision trees	on trees 2	
Proj. 10	Designing system for classification using support vector machines	nachines 2	
Proj. 11	Designing system for regression using support vector machines	2	
Proj. 12	Solving the problem of clustering using FCM algorithm	2	
Proj. 13	Solving the problem of clustering using PCM algorithm	2	
Proj. 14	Solving the problem of clustering using Gustafson-Kessel algorithm	2	
Proj. 15	Solving the problem of dimension reduction	2	

TEACHING TOOLS

1. – lectures using multimedia presentations		
2. – exercises in the form of solving by students a problems posed in the time of the lectures		
3. – project classes – presentation by students the progress in the tasks		

LITERATURE

Leszek Rutkowski, Computational Intelligence, Springer, 2008 Shai Shalev-Shwartz , Shai Ben-David, Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press, 2014

Ethem Alpaydin, Introduction to Machine Learning, M i T Press, 2014

TEACHERS

1. prof. Leszek Rutkowski

ADDITIONAL NOTES

Links to course unit teaching materials can be found on the http://iisi.pcz.pl/ClaDM/ website for current students.