Course name:

Medical imaging techniques					
Field of study:	Type of study:		Course code:		
Biomedical engineering			B10_14		
	Full-time				
Course characteristics:		Level:	Year: II		
Mandatory		First	Semester: IV		
Type of classes:		Hours per week:	ECTS points amount:		
lectures, laboratories		2 lect ^E , 2 lab	5 ECTS		

COURSE GUIDE

I. GENERAL INFORMATION OF THE COURSE

AIMS OF THE COURSE

- A1. Obtaining knowledge about medical imaging techniques: fundamental physics, mathematical principles, medical image processing, medical applications.
- A2. Practice by students the design a computer application realizing signal processing involved with a chosen medical imaging technique.

PRELIMINARY REQUIREMENTS FOR THE KNOWLEDGE, SKILLS AND OTHER COMPETENCIES

- 1. Basic knowledge about diagnostic methods in medicine.
- 2. Programming skills in chosen development environment.
- 3. Ability to chose a proper numerical method for problem solving given tasks.
- 4. Ability to perform mathematical operations to solve given problems.
- 5. Ability to work independently and in the group.
- 6. Ability to correct interpretation and to presentation of own action.

II. LEARNING OUTCOMES

- EE 1 students will posses theoretical knowledge in the fields of medical imaging techniques,
- EE 2 students will be able to design independently computer systems which have implemented methods of signal processing involved with medical imaging techniques,
- EE 3 students will be able to prepare a report from a designing process of computer system.

CONTENT

Lectures	Hours		
Lect. 1 – The role of medical imaging techniques. Systematics of medical imaging			
Lect 2 2 - X-ray technique: historical background fundamental physics construction of	4		
Lect. 2,3 – X-ray technique: historical background, fundamental physics, construction of X-ray equipment			
Lect 4.5 – Computed tomography: historical background fundamental physics technical			
concepts of computed tomography scanners, reconstruction algorithms.			
Lect. 6.7 – Positron emission tomography: historical background, fundamental physics.			
construction of PET scanners.			
Lect. 8,9 – Statistical reconstruction algorithms.	4		
Lect. 10,11 – Magnetic resonance imaging: historical background, fundamental physics,	4		
construction of MRI scanners, imaging modalities.			
Lect. 12 – Single positron emission computed tomography: historical background,	2		
fundamental physics, construction of SPECT scanners.			
Lect. 13,14 – Ultrasonography: historical background, fundamental physics, construction	4		
of USG apparatus, imaging modalities.			
Lect. 15 – Other imaging techniques: termography, radioisotope imaging, etc.			
Laboratories			
Lab. 1 – Introduction to the chosen programming environment. Design of a simple	2		
application.			
Lab. 2,3 – Implementation of the simulation environment for acquisition of parallel x-ray			
beams.			
Lab. 5 – Implementation of the simulation environment for acquisition of x-ray fan-	2		
beams.			
Lab. 6,7 – Implementation of the simulation environment for acquisition of x-ray cone-	4		
beams.			
Lab. 8,9 – Implementation of the convolution/back-projection reconstruction algorithm	4		
for parallel-beam scanner.			
Lab. 10 – Implementation of the Fast Fourier Transfor for 1D and 2D.	2		
Lab. 11 – Implementation of the filtration/back-projection reconstruction algorithm for	2		
parallel-beam scanner.			
Lab. 12 – Implementation of the convolution/back-projection reconstruction algorithm			
for parallel-beam scanner.			
Lab. 13,14 – Implementation of the FDK reconstruction algorithm for cone-beam spiral			
scanner.			
Lab. 15 – Simulation of the Poisson noise for parallel x-ray beams.			

TEACHING TOOLS

1. – lectures using multimedia presentations	
2. – chosen programming environment	
3. – computer stations with software	
4. – laboratory instructions	

Błąd! Nie można odnaleźć źródła odwołania.

1. A.C. Kak, M. Slanley, Principles of computerized tomographic imaging. IEEE Press, New York, 1988.

2. A.K. Jain, Fundamentals of digitals image processing, Prentice-Hall, 1989.

3. M. Sonka, J.M. Fitzpatrick, Handbook of medical imaging, vol. 2, Medical image processing and analyzing, SPIE- The international society for optical engineering, 2010.

4. P. Suetens, Fundamentals of medical imaging, Cambridge University Press, 2009.

5. R. Cierniak, X-Ray Computed Tomography in Biomedical Engineering, Springer, London, 2011.

COURSE COORDINATOR AND ACADEMIC TEACHER

1. dr hab. inż. Robert Cierniak, Prof. PCz <u>cierniak@kik.pcz.pcz.pl</u>