Course name:						
Inteligent systems of signal processing						
Field of study:	Туре	of study:	Sourse code:			
Computer science	Full-time		CIDM2_04			
Course characteristics:		Level:	Year: I			
Mandatory within the additional		Second (M.Sc.)	Semester: II			
content						
Type of classes:		Hours per week:	ECTS points amount:			
lectures, laboratories		2 lect ^E , 2 lab	5 ECTS			

COURSE GUIDE

AIMS

- A1. Acquainting the student with selected methods of intelligent data processing, especially artificial neural networks, genetic alorithms and multi-criterion optimization.
- A2. Obtaining by the students the practical skils in recognizing the fields when presented methods could be applied.
- A3. Obtaining by the students the practical skils in developing solutions to intelligent data processing.

PREREQUISITES

- 1. The basic knowledge in the field of the arithmetics.
- 2. The basic knowledge in the field of programming.
- 3. The skills of working alone and in the group.
- 4. The skills of correct interpretation and presentation of own activity.

LEARNING OUTCOMES

- EK 1 Students will possess adepth theoretical knowledge in the field of the feed forward neural networks and their learning
- EK 2 Students will possess abasic knowledge in the field of the recurrent neural networks, especially Hopfield's like networks.
- EK 3 Students will possess a basic knowledge in the field of the optimization process with using of Hopfield networks.
- EK 4 Students will possess a basic knowledge in the field of the construction of autoassociative memories with using of discrete Hopfield networks.
- EK 5 Students will possess a basic knowledge in the field of the optimization process with using of evolutionary algorithms.
- EK 6 Students will possess practical skils in developing neural networks and evolutionary programming to processing a data.
- EK 7 Students will develop the ability to use literature, databases and other sources in their work.
- EK 8 Students will develop the ability to work alone and in the team and prepare the report from the work.

CONTENT

Lectures

Lect. 1	Introduction to intelligent computational system	2
Lect. 2	Artificial neuron and its application. Single layer neural networks.	
Lect. 3	Multilayer feed-forward neural networks and their lerning	2
Lect. 4	Multi-criterion optimization problems	2
Lect. 5	Physical bases of the Hopfield's structure - a spin glass theory.	
Lect. 6	Continuous Hopfield Neural Networks	
Lect. 7	Discrete Hopfield Neural networks	
Lect. 8	Autoassociative memories	
Lect. 9	Countinuous Hopfield's structures in optimization tasks	
Lect. 10	LO Hybrid Hopfield's like networks	
Lect. 11	1 Unsuppervised learning	
Lect. 12	Hamming neural networks	
Lect. 13	Self-organizing maps	2
Lect. 14	Genetic algorithms	2
Lect. 15	Evolutionary strategies	2
Laboratories		Hours
Lab. 1	Perceptron in logical processing (OR, AND)	2
Lab. 2	Multilayer neural network for XOR processing	
Lab. 3	Multilayer neural network for XOR processing	
Lab. 4	Autoassociative memory for storing letters patterns	
Lab. 5	Autoassociative memory for storing letters patterns	
Lab. 6	Countinuous Hopfield Network for solving of travelling salesman problem	2
Lab. 7	Countinuous Hopfield Network for solving of travelling salesman problem	2
Lab. 8	Self-Correcting Neural Network for solving of N-Quinn problem	2
Lab. 9	Self-Correcting Neural Network for solving of N-Quinn problem	2
Lab. 10	Unsupervised learning of Neural Networks - vectors classification	2
Lab. 11	Unsupervised learning of Neural Networks - vectors classification	
Lab. 12	Self-organizing maps for objects systematization	
Lab. 13	Self-organizing maps for objects systematization	
Lab. 14	Evolutionary strategy for functions fitting	
Lab. 15	Evolutionary strategy for functions fitting	

TEACHING TOOLS

1. – lectures using multimedia presentations		
2. – blackboard and chalk or whiteboards and pens		
3. – laboratory guides		
4. – reports from laboratory activities		
5. – computer stations with software		

LITERATURE

1. Andries P. Engelbrecht: Computational Intelligence: An Introduction, Wiley 2007

2. James P. Coughlih, Robert H. Baran: Neural Computation in Hopfield Networks and Boltzmann Machines, Univ of Delaware Pr 1995

3. Dan Simon: Evolutionary Optimization Algorithms, Wiley 2013

4. Rangarajan K. Sundaram: A First Course in Optimization Theory, Cambridge University Press 2014

5. Teuvo Kohonen: Self-Organization and Associative Memory, Springer-Verlag, 1988

TEACHERS

1. dr inż. Łukasz Laskowski, lukasz.laskowski@iisi.pcz.pl

ADDITIONAL NOTES

Links to course unit teaching materials can be found on the http://iisi.pcz.pl/ClaDM/ website for current students.