Course name :				
Fractional calculus and its applications				
Type of study:	Type of study:	Examination:		
Mathematics	Full-time	Assignment		
Course characteristics:	Level:	Year:		
Facultative	Second (M.Sc.)	Full year		
Type of classes:	Hours per week:	ECTS points:		
lectures, tutorials	2 lect, 2 tut	6 ECTS		

COURSE GUIDE

AIMS

- A1. Making the students familiar with the elements of non-integer order calculus.
- A2. Developing students' practical skills to solve fractional differential equations (FDEs) and to interpret solutions.
- A3. To acquaint the students with the applications of the fractional calculus and the fractional differential equations theory.

PREREQUISITES

- 1. Course of the mathematical analysis.
- 2. Course of the complex analysis.
- 3. Ability to use different sources of information.
- 4. Ability to work independently and in a group.
- 5. Ability to correctly interpret and present their own activities.

LEARNING OUTCOMES

- EE 1 student is familiar with the basics of fractional calculus.
- EE 2 student is able to solve different types of non-integer order differential equations.
- EE 3 student has basic knowledge about applications of fractional calculus.

CONTENT

Lectures	
Lect. 1 - Course introduction. Gamma and beta functions.	
Lect. 2 - Mittag-Leffler functions. Wright function.	
Lect. 3 – Fractional integrals for functions of one variable in a bounded and unbounded domain. Definitions, examples and properties.	
Lect. 4, Lect. 5 – Left and right fractional derivatives. Caputo, Riemann- Liouville and Liouville definitions. Properties.	
Lect. 6 – Composition rules for integrals and derivatives.	
Lect. 7 – Fractional differential nonlinear equations – existence and uniqueness results.	
Lect. 8 – Linear differential equations of non-integer order.	
Lect. 9 – Basset's problem.	2
Lect. 10 – Fractional Sturm-Liouville problem – variational formulation.	

Lect. 11, Lect. 12 – Introduction to Laplace and Fourier transforms.	
Lect. 13 – Cauchy problems for time-fractional partial differential equations.	
Lect. 14 – Anomalous diffusion – subdiffusion.	
Lect. 15 – Anomalous diffusion – superdiffusion.	
TUTORIALS	
Tut. 1 – Gamma and beta functions.	
Tut. 2 – Mittag-Leffler and Wright functions.	
Tut. 3 – Riemann-Liouville integrals – examples of integration.	
Tut. 4, Tut. 5 – Fractional differentiation – examples.	
Tut. 6 – Properties of fractional derivatives.	
Tut. 7 – Application of the properties of fractional operators in transformation of fractional differential equations (FDEs).	
Tut. 8 – Fixed point theorem as a method of solving FDE.	
Tut. 9, Tut. 10 – Linear FDEs with constant coefficients.	
Tut. 11 – Laplace and Fourier transforms – examples.	
Tut. 12 – Laplace transform - application in solving linear differential equations of integer and non-integer order.	
Tut. 13, Tut. 14 – Laplace-Fourier transform for partial FDEs.	4
Tut. 15 - Test.	

TEACHING TOOLS

1. – lectures using multimedia presentations
2. – blackboard and chalk or whiteboards and pens

LITERATURE

Lecture notes.
A.A. Kilbas, H.M. Srivastava, J.J. Trujillo *Theory and Applications of Fractional Differential Equations*, Mathematics Studies 204. North-Holland 2006

B.J. West, M. Bologna, P. Grigolini, *Physics of Fractal Operators*, Springer 2003 Lokenath Debnath, Dambaru Bhatta, *Integral Transforms and Their Applications*, Chapman and Hall/CRC 2006

M. Klimek, *On Solutions of Linear Fractional Differential Equations of a Variational Type*, The Publishing Office of the Czestochowa University of Technology 2009

TEACHERS

- 1. Prof. Malgorzata Klimek, <u>mklimek@im.pcz.pl</u>
- 2. Dr Tomasz Blaszczyk, tomasz.blaszczyk@im.pcz.pl

ADDITIONAL NOTES

Links to course unit teaching materials can be found on the <u>http://www.pcz.pl/english/ects-subjects</u> website for current students.