Code	II.3.
Course Title (English)	. Engineering Physics-Electromagnetism
Course Title (Polish)	Fizyka techniczna – Podstawowe prawa elektrodynamiki i magnetyzmu
Credits	4 ECTS

Language of instruction	English							
Compulsory for Profile:	Computer Modelling and Simulation (CMS), Intelligent Energy (IE), Biotechnology for Environmental Protection (BEP), Business and Technology (BT)							
Type of studies	BSc studies							
Unit running the programme	Electrotechnics and Automatic Control Division at Institute of Environmental Engineering							
Course coordinator and academic teacher	Zygmunt Piątek, profesor, Zygmunt Piątek, profesor							
Form of classes and number of hours	Semester	Lec.	Tut.	Lab.	Proj.	Sem.	Credit points	
	II	30	15				4	
Learning outcomes Prerequisites (mathematical tools)	The introduction to atomic structure, electrostatic, electroconductive, magnetic and electromagnetic fields Physical phenomena, vector analysis and calculus at the secondary school program level							
Course description:	LECTURES (15 hours):							
	 1. Introduction Scalars and vectors Algebra of vectors Coordinate systems Line, surface and volume integrals 							
	2. Coulomb forces and electric field intensity Electric charge Coulomb's law Electric field intensity Charge distributions							

3. Electric flux and Gauss' law

Electric flux Flux density Gauss' law Relation between flux density and electric field intensity

4. Electrostatic field: work, potential and energy

Work done in moving a point charge Conservative property of the electrostatic field Electric potential between two points Potential of a point charge and charge distribution

5. Potential and electric field

Equipotential lines Gradient Relationship between potential and electric field intensity Energy in static electric fields

6. Capacitance. Dielectrics and conductors

Capacitance Energy stored in a capacitor Electric field in matter Polarization Relative permittivity Electrostatic field inside a conductor

7. Currents and conductors

Charges in motion Convention current density Conduction current density Conductivity Current Current distributions

8. Electric potential and voltage

Resistance and resistors Ohm's law Power losses Continuity of current Kirchhoffs's laws

9. Magnetic field

Permanent magnets and early ideas on magnetism Oersted's experiments Magnetic flux density and Biot-Savart law Magnetic field strength Ampère's law

10. Forces and work in magnetic field

Magnetic force on particles Electric and magnetic fields combined Magnetic force on a current element Definition of ampere Torque Work in magnetic field

11. Inductance and magnetic properties of matter

Magnetic flux Inductance Energy stored in a coil Mutual inductance Magnetic field in matter Magnetic and non-magnetic materials B-H curve

12. Induced EMF

Faraday's experiments Faraday's law Lenz's law Conductors in motion through time-independent magnetic field Conductors in motion through time-dependent magnetic field Induced electric field

13. Electrical machinery using induced EMF

Transformer Model of inductive machine Torque on planar coil in magnetic field AC engine and generator DC engine and generator

14. Maxwell's equations

Maxwell's correction Displacement current Ratio of displacement current and conduction current Maxwell's equations

15. Electromagnetic waves

Waves Planar electromagnetic wave Monochromatic planar electromagnetic wave Skin depth TUTORIALS AIM (15 hours): Calculating of quantities describing electric and magnetic fields according to the lecture programme.

LABORATORY (15 hours): 5 labs

Form of assessment	Written assessment - 1 hour (5 problems)					
Basic reference materials	a) b)	Lectures and hand notes. Edminister J.A., Theory and problems of electromagnetics , Schaum's Outline Series, McGraw-Hill, 1993.				
Other reference materials	a)	Sibley M., Introduction to electromagnetism , Essential Electronics Series, Butterworth-Heinemann Ltd., 1995.				
	b)	Nasar S.A., 2000 solved problems in electromagnetics , Schaum's Solved Problems Series, McGraw-Hill, 1992.				
	c)	Kraus J.D., Electromagnetics , McGraw-Hill Series in Electrical & Computer Engineering, McGraw-Hill College, 1991.				
	d)	Cheng D.K., Field and Wave Electromagnetics, International Edition, Prentice Hall, 1991.				
	e)	Hayt W.H., Engineering Electromagnetics , Electrical & Electronic Engineering Series, McGraw-Hill Science/Engineering/Math, 2005.				
	f)	Hughes A., Electric Motor and Drives: Fundamentals, Types and Applications , Newnes (an imprint of Butterworth-Heinemann Ltd.), 1993.				
	g)	Hindmarsh J., Electrical Machines and Drives: Worked Examples, Butterworth-Heinemann Ltd., 1996.				

e-mail of the course coordinator	zygmunt.piatek@interia.pl
and academic teachers	
Average student workload	45 + 45 hrs
(teaching hours + individ.)	
Remarks:	
Updated on:	04.04.2012