Course name :				
Differential equations				
Type of study: Mathematics	Type of study: Full-time	Examination: Exam written		
Course characteristics:	Level:	Year:		
Compulsory	Second (M.Sc.)	Full year		
Type of classes:	Hours per week:	ECTS points:		
lectures, tutorials	2 lect, 2tut	5 ECTS		

COURSE GUIDE

AIMS

- A1. Making the students familiar with the methods to solve certain types of differential equations and systems of differential equations.
- A2. Acquaint students with theorems to existence and uniqueness of solutions of differential equations.
- A3. Develop skill in formulating differential equation models which find applications to engineering, physics, biology and economics.

PREREQUISITES

- 1. Course of the calculus of one and several variables (mathematical analysis).
- 2. Course of linear algebra.
- 3. Ability to use different sources of information.
- 4. Ability to work independently and in a group.
- 5. Ability to correctly interpret and present their own activities.

LEARNING OUTCOMES

- EE 1– student is able to solve the selected differential equations and systems of linear differential equations and is able to give the proper interpretation of the solutions.
- EE 2— student is able to formulate and sketch the proof of the selected theorems on existence and uniqueness of solutions of differential equations.
- EE 3 student is familiar with applications of differential equations.

CONTENT

Lectures	
Lect. 1 - Introduction to differential equations. Definitions and terminology.	
Differential equations as mathematical models.	
Lect. 2 - First order differential equations: separable equations, homogeneous	2
equations.	
Lect. 3 - First order linear differential equations, Bernoulli equation.	2
Lect. 4 - Modeling with first-order differential equations.	
Lect. 5 - Exact equations. Riccati differential equation.	2
Lect. 6 - Theorems on existence and uniqueness of solutions of	
differentialequations.	
Lect. 7 - Second order differential equations. Reduction of order.	2

Lect. 8 - Cauchy-Euler equations. Higher order differential equations.	
Lect. 9 - Method of variation of parameters.	
Lect. 10- Method of undetermined coefficients. Modeling with higher order differential equations.	
Lect. 11- Series solutions of linear differential equations.	
Lect. 12 - Stability of solutions of differential equations.	
Lect. 13 - Systems of linear first-order differential equations. Homogenous linear systems.	
Lect. 14 - Non-homogenous linear systems.	
Lect. 15 - Plane autonomous systems.	
TUTORIALS	
Tut. 1 - Classification of differential equations. Direction fields, isoclines, integral curves.	
Tut. 2 - Solving separable and homogeneous differential equations.	
Tut. 3 - Solving first order linear differential equations and Bernoulli equations.	
Tut. 4 - Modeling with first-order differential equations	
Tut. 5, Tut. 6-Solving exact and Riccati differential equations.	
Tut. 7,Tut. 8- Solving second order differential equations.	
Tut. 8, - Test	
Tut. 9, Tut. 10 - Solving higher order differential equations. Method of variation of parameters. Method of undetermined coefficients.	
Tut. 11, Series solutions of linear differential equations.	
Tut. 12, Tut. 13- Solving of systems of linearfirst-order differential equations.	
Tut. 15 – Stability of solutions of differential equations.	
Tut. 15 - Test.	

TEACHING TOOLS

- 1. lectures using multimedia presentations
- 2. blackboard and chalk or whiteboards and pens

LITERATURE

Lecture notes.

D.G. Zill, M.R. Cullen, Differential equations with boundary-value problems.

Thomson Brooks/Cole 2005.

W. F. Trench, Elementary differential equations with boundaryvalue problems, 2013

TEACHERS

- 1. prof. dr hab.Stanisław Kukla, stanisław.kukla@im.pcz.pl
- 2. dr Jowita Rychlewska, jowita.rychlewska@im.pcz.pl

ADDITIONAL NOTES

Links to course unit teaching materials can be found on the http://www.pcz.pl/english/ects-subjects website for current students.