Course name :			
Concurrent and Distributed Programming			
Type of study:	Type of study:	Course code:	
Computer science	Full-time	D5_02, E5_02	
Course characteristics:	Level:	Year: 3	
Mandatory within the	First	Semester: 5	
additional content			
Type of classes:	Hours per week:	ECTS points:	
lectures, laboratories	2 lect, 2 lab	6 ECTS	

COURSE GUIDE

AIMS

- A1. Knowledge on parallel architectures and models, standards and techniques for concurrent, distributed, and parallel programming.
- A2. Practical skills in concurrent / distributed / parallel programming, running and debugging the application for different types of concurrent and distributed architectures.

PREREQUISITES

- 1 Basic knowledge of computer architecture and operating systems.
- 2 Basic knowledge of the theory of algorithms and data structures.
- 3 Ability of C++ and Java programming.
- 4 Ability to use different sources of information and technical documentation.
- 5 Ability to work independently and in a group.
- 6 Ability to correctly interpret and present their own activities.

LEARNING OUTCOMES

- EE 1 has knowledge about the elements of concurrent programming, parallel and distributed computing.
- EE 2 has knowledge about the parallel architectures, knows the different standards of distributed and concurrent programming.
- EE 3 able to create concurrent, parallel and distributed applications.
- EE 4 has basic skills in analyzing the correctness and performance of parallel and concurrent programs.
- EE 5 able to design and implement a distributed application, based on the programming model.

CONTENT

Lectures	
Lect. 1 - Introduction to parallel processing and parallel system architecture	2
Lect. 2 - Distributed processing / parallel clusters and grid systems	
Lect. 3 - Examples of application parallel and distributed computing	
Lect. 4 - Constructing parallel and distributed algorithms – part 1	2
Lect. 5 - Constructing parallel and distributed algorithms – part 2	2
Lect. 6 - Parallel and distributed programming models	
Lect. 7 - Introduction to languages environments of parallel and	
distributed programming	

Lect. 8 - Parallel programming using MPI standard – part 1	2
Lect. 9 - Parallel programming using MPI standard – part 2	
Lect. 10 - Basic concepts of concurrent programming	
Lect. 11 - Representative examples of concurrent programming problems and	
their solutions using MPI	
Lect. 12 - Multithreaded Programming in Java – part 1	
Lect. 13 - Multithreaded Programming in Java – part 2	
Lect. 14 - Representative examples of concurrent programming problems and	
their solutions using Java	
Lect. 15 - The use of RMI environment for building distributed applications	
LABORATORIES	
Lab. 1 - Principles of creating and running parallel programs in C / C ++ for	2
MPI environment, running simple programs.	
Lab. 2 - Point-to-point communication.	
Lab. 3 - Creating programs using the master-worker model.	
Lab. 4 - Examples of more advanced parallel programs in MPI environment.	2
Lab. 5 - Analysis and optimizing the performance of parallel programs in MPI	
environment – part 1	
Lab. 6 - Analysis and optimizing the performance of parallel programs in MPI	
environment – part 2	
Lab. 7 - Written test.	
Lab. 8 - Introduction to multithreaded programming in Java.	2
Lab. 9 - Synchronization of threads to access shared resources.	
Lab. 10 - Coordination of threads in the producer-consumer problem.	
Lab. 11 - Coordination of threads in the dining philosophers problem.	
Lab. 12 - Coordination of threads in the readers and writers problem.	2
Lab. 13 - Profilining of concurrent applications	2
Lab. 14 - Analysis and optimizing the performance of parallel programs in	2
Java environment	
Lab. 15 - Written test.	2

TEACHING TOOLS

1. – lectures using multimedia presentations
blackboard and chalk or whiteboards and pens
3. – laboratory guides
4. – reports from laboratory activities
5. – computers with software

LITERATURE

Andrews, G.R.: "Foundations of Multithreaded, Paralel and Distributed Programming". Addison Wesley, 2002.

Grama, A., Gupta, A., Kumar, V., Karypis, G.: "Introduction to parallel computing (second edition)". Addison-Wesley, 2003.

TEACHERS

1. dr inż. Krzysztof Rojek, krojek@icis.pcz.pl

2. dr inż. Lukasz Szustak, <u>Iszustak@icis.pcz.pl</u>