module title:					
COMBUSTION					
field of study: Mechanical Engineering	type of study: full-time	course code: S6_1-4			
course: Modelling & Simulation in Mechanics	degree: Master (MSc)	year: I semester: II			
type of classes: lecture, classes, EXAM	hours per week: 2L, 2C	No of ECTS credits: 5			

MODULE DESCRIPTION

TARGETS

- **T1.** Provide theory of combustion fundamentals.
- **T2.** Acquire skills in combustion calculations.

PREREQUISITES & ADDITIONAL REQUIREMENTS

- **1.** Fundamentals of chemistry, mathematics and thermodynamics.
- 2. Fundamentals of thermal machinery principles.
- 3. Capability of using source literature.
- 4. Capability of individual work and collaboration in a group.
- 5. Data analysis and presentation of results.

LEARNING OUTCOMES

- LO1. Knowledge on combustion thermodynamics and kinetics.
- **LO2.** Knowledge on fundamentals of construction and operation of thermal machinery.
- LO3. Knowledge on trends in combustion technologies.
- LO4. Ability to determine basic parameters in various combustion processes.
- **LO5.** Knowledge on technologies for toxicity removal from exhaust gases.

TEACHERS

module coordinator: dr Stanisław Szwaja, assoc. prof. - <u>szwaja@imc.pcz.czest.pl</u> academic teachers:

- dr Stanisław Szwaja, assoc. prof. szwaja@imc.pcz.czest.pl
- dr Piotr Pełka, assoc. prof. pelka@imc.pcz.czest.pl
- dr Monika Kosowska-Golachowska kosowska@imc.pcz.czest.pl

TEACHING TOOLS

1. lecture with the use of multimedia presentations

2. tutorials of combustion calculation

- **3.** instructions to classes
- 4. own codes and commercial software

LECTURES	hours
L 1 – Fundamental laws in thermodynamics and combustion science.	1
L 2,3 – Combustion definition. Premixed and diffusion combustion. Deflagration and detonation. Global reaction of combustion. Stoichiometry. Flammability limits. Enthalpy. UHV, LHV. Fuel specifications.	2
 L 4,5 – Thermochemistry. Energy conservation law. Combustion at constant pressure and constant volume. Adiabatic flame temperature. Reactants and products. Chemical equilibrium. Dissociation. Gibbs function. Equilibrium constant. 	2
L 6 – Introduction to collision theory. Elementary reactions and rates.	1
L 7,8 – Combustion mechanism. types of elementary reactions. Time scales.	2
L 9,10 – Selected combustion mechanisms: H_2 - O_2 , CO- O_2 , methane, NO_x formation.	2
L 11-13 – Laminar premixed combustion. Description. Simplified analysis. Flame analysis in the Bunsen burner. Flame thickness. Laminar flame speed. Combustion in the spark ignited engine.	3
L 14 – Ignition. Theory and models by Semenov and Frank-Kamenetski.	1
L 15,16 – Laminar diffusion combustion. Flame length. Soot formation.	2
L 17 – Introduction to turbulent combustion.	1
L 18,19 – Combustion of liquid fuels. Simplified model of droplet evaporation and combustion. Combustion in the compression ignition engine.	2
L 20,21 – Solid fuel combustion. Models of carbon particle combustion. Examples. Coal burner description.	2
L 22,23 – Detonation combustion. Rankine-Hugoniot curve. Structure of detonation wave. Detonation speed.	2
L 24 – Measurements in combustion.	1
L 25,26- Toxic products of combustion. Regulations and limits for toxic emissions.	2
L 27,28 – Methods for toxic substances removal. Pretreatment and aftertreatment. 3-way catalytic converter. SCR and NSCR. PM traps.	2
L 29,30 – Trends in clean combustion technologies.	2

	CLASSES
С	1-4 – Calculations of combustion process of gaseous, liquid and solid fuels.
	Nale and mass frontions. Air to final statistic matrix ratio. Family along

C 29-30 – Calculation of detonation flame velocity.		
C 27-28 – Calculations of laminar flame speed.		
C 23 -26 – Solid particle combustion – one film model.	4	
C 19-22 – Determination of energy losses and boiler efficiency. Energy and exergy balance.	4	
C 15-18 – Calculations of volumetric composition of the wet and dry flue gases.	4	
C 11-14 – Calculations of adiabatic flame temperature at C_P and C_V .	4	
C 9-10 – Thermodynamic equilibrium with species dissociation.	2	
and higher heating value (HHV) of fuels.	4	
C 5-8 – Calculations of enthalpy of reaction, heat of combustion, lower heating value (LHV)	4	
Mole and mass fractions. Air-to-fuel stoichiometric ratio. Equivalence ratio.	4	
C 1-4 – Calculations of combustion process of gaseous, liquid and solid fuels. Reaction rate.		

REFERENCES

1. Borman G.L., Ragland K.M.: Combustion Engineering, McGraw Hill, 1	w Hill, 1998
--	--------------

2. Drysdale D.: An introduction to fire dynamics, New York, Wiley & Sons, 1990

3. Glassman I., Yetter R.A.: Combustion, Academic Press, 2008

4. Kuo K.K.: Principles of Combustion, Wiley & Sons, 2005

- 5. Turns S.: An Introduction to Combustion: Concepts and Applications, McGraw-Hill, 2000
- 6. Warnatz J., Maas U., Dibble R.W.: Combustion: Physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation, Springer, 2001

hours