Code	II.6.		
Course Title (English)	Mathematics II		
Course Title (Polish)	Matematyka II		
Credits	6 ECTS		

Language of instruction English

Type of studies BSc studies

Unit running the Institute of Mathematics and Computer Science *programme*

Course coordinator and M. Klimek Ph. D., B. Mochnacki Prof. (Lec.), M. Klimek Ph. D. (Tut.) academic teachers

Form of classes and number of hours	Semester	Lec.	Tut.	Lab.	Proj.	Sem.	Credit points	
	II	45	30	-	-	-	6	
Learning outcomes	Acquiring knowledge of differential and integral calculus of functions of several variables as well as ordinary differential equations. Learning mathematical skills that can be applied in other technical and economic courses.							
Prerequisites	Mathematics I							
Course description	LECTURE							
	Functions of variables; lim and extrema;	ons of two and three variables: domain, graph, level curves for function of two es; limit of a function; continuity; partial derivatives; the chain rule, critical points rrema; implicit function theorem.						
	Double integrals: definition, properties, interpretation; expressing the double integral as an iterated integral; integration by substitution (polar coordinates' case); application of double integrals.							
	Triple integrals: definition, properties, interpretation; expressing the triple integral as an iterated integral; integration by substitution (cylindrical and spherical coordinates); application of triple integrals.							
	Line integrals of the first kind : definition, properties and interpretation; transforming the line integral to the corresponding definite integral.							
	Line integrals of the second kind (along oriented curves): definition, properties and interpretation; transforming the line integral to the corresponding definite one; Green's theorem; independence of the path.							
	Ordinary differential equations: particular and general solutions of an ODE of the first order; initial value problems; integral curves; existence and uniqueness of a solution of the initial value problem (Peano and Cauchy's theorem); classification of ODE's of the first order and methods to find their solutions; ODE's of the second order reducible to the first order; linear equations of the second order with constants coefficients.							

TUTORIALS: see lecture content

LABORATORY Not applicable PROJECT Not applicable SEMINAR Not applicable

.

Form of assessment

Basic reference materials

Other reference materials

e-mail of the course coordinator and academic teachers	klimek@imi.pcz.czest.pl
Average student workload (teaching hours + individ)	5 teaching hours + 3 hours of individual work per week