Course name:									
Probabilistic systems analysis (& statistics)									
Field of study:	Type of study:		Sourse code:						
Computer science	Full-time		CIDM1_04						
Course characteristics:		Level:	Year: I						
Mandatory within the additional		Second (M.Sc.)	Semester: I						
content									
Type of classes:		Hours per week:	ECTS points amount:						
lectures, laboratories, exercises		2 lect, 2 lab, 1 ex	5 ECTS						

COURSE GUIDE

AIMS OF THE COURSE

- A1. Making the students familiar with the elements of the theory and methods of probability useful in engineering problems.
- A2. Making the students familiar with the elements of the statistical methods.
- A3. Introducing the students into using the computer methods in probability and statistics.

PREREQUISITES

1. Course of the calculus of one variable

LEARNING OUTCOMES

- EK 1 student is familiar with the basics of probability; student understands the need of probability in statistics.
- EK 2 student is familiar with the introductory methods of a point and interval estimation; student is able to use Maple in solving simple estimation problems.
- EK 3 student is familiar with the introductory methods of a hypothesis testing; student is able to use Maple in solving problems of this type.

CONTENT

Lectures		Hours
Lect. 1	Course introduction. The subject of statistics, the need of probability. Types of data	2
Lect. 2	Methods for describing data	
Lect. 3	The numerical descriptive measures	
Lect. 4	The numerical descriptive measures, cont. , random experiment, events, sample spaces	2
Lect. 5	Probability – axioms and properties	2
Lect. 6	Conditional probability, total probability Bayes' theorem	2
Lect. 7	Independence. Introduction to the random variables. Discrete random variables.	2
Lect. 8	Probability distribution for discrete random variable, expected value. Basic discrete distributions.	2
Lect. 9	Continuous random variables. Probability distribution for continuous random variables, expected value. Basic continuous distributions.	2
Lect. 10	Basic continuous distributions cont. Introduction to sampling distributions.	2
Lect. 11	Introduction to sampling distributions cont. The law of large numbers. The central limit theorem.	2
Lect. 12	The point estimation	2

Lect. 13	The confidence intervals	2
Lect. 14	Test of hypothesis: single sample	
Lect. 15	Test of hypothesis: two samples	2
Exercises		Hours
Ex. 1	Types of data	1
Ex. 2	Graphical description of data	1
Ex. 3	The mode, the arithmetic mean	1
Ex. 4	The range of data. Variance and standard deviation	1
Ex. 5	Variance and standard deviation cont., Interpretation of the standard deviation.	1
Ex. 6	Property of probability, Bayes' rule	1
Ex. 7	Independence	1
Ex. 8	Discrete random variables: calculating the expected value and the standard deviation	1
Ex. 9	Discrete random variables: applications to the real world problems	1
Ex. 10	Continuous random variables: calculating the expected value and the standard deviation	1
Ex. 11	Continuous random variables: applications to the real world problems	1
Ex. 12	Point estimation, maximum likelihood method	1
Ex. 13	A confidence interval for a population mean – a large sample case	1
Ex. 14	Test of hypothesis about a population mean – a large sample case	1
Ex. 15	The power of a test, p-value of a test	1
Laborator	ies	Hours
Lab. 1	Review of integration	2
Lab. 2	Methods for describing data	2
Lab. 3	Calculating numerical descriptive measures	2
Lab. 4	Basic combinatorics	2
Lab. 5	Classical definition of probability	2
Lab. 6	Conditional probability, total probability, Bayes' theorem, independence	2
Lab. 7	Discrete random variables.	2
Lab. 8	Probability distribution for discrete random variable, expected value.	2
Lab. 9	Continuous random variables. Probability distribution for continuous random variables, expected value.	2
Lab. 10	Generating pseudorandom numbers	2
Lab. 11	Various problems concerning discrete and continuous random variables	2
Lab. 12	The point estimation	2
Lab. 13	The confidence intervals	2
Lab. 14	Test of hypothesis: single sample	2

TEACHING TOOLS

1. – lecture	
2. – tutorials	
3. – computer laboratory	

LITERATURE

Lecture notes	
Ramachandran, K. M., Tsokos.C.P., Mathematical statistics with applications, Elsevier Academic Press, 200	9
J.T.McLeve, P.G.Benson, Statistics for business and economics, Macmillan, London 1988 and later issues	

TEACHERS

1. dr Piotr Puchała, piotr.puchala@im.pcz.pl