module title:			
POLYMER PROCESSING			
field of study: Mechanical Engineering	type of study: full-time	course code: S6_3-10	
course: Modelling & Simulation in Mechanics	degree: Master (MSc)	year: I semester: I	
type of classes: lecture, laboratory	hours per week: 3L, 5Lab	No of ECTS credits: 8	

MODULE DESCRIPTION

TARGETS

- **T1.** Provide theory of different polymer processing methods and acquire capabilities to adjust processing parameters.
- **T2.** Provide knowledge of plastic part design basics and tool design basics and acquire basic skills in design using a CAD software.
- **T3.** To acquire capabilities to perform simulation of injection moulding process and provide knowledge about computer aided engineering in polymer processing.

PREREQUISITES & ADDITIONAL REQUIREMENTS

- **R1.** Fundamentals of physics, chemistry, mathematics, mechanics and thermodynamics.
- R2. Fundamentals of materials science.
- **R3.** Safety rules during the use of laboratory equipment and technological machines.
- R4. Capability of using source literature.
- **R5.** Capability of individual work and collaboration in a group.
- **R6.** Data analysis and presentation of results.

LEARNING OUTCOMES

- LO1. Knowledge on polymeric materials and their application.
- LO2. Knowledge on different polymer processing methods process, tools, products.
- LO3. Knowledge on plastic part design and tool design basics.
- **LO4.** Knowledge on injection moulding simulation method.
- **LO5.** Ability to adjust basic processing parameters in selected polymer processing methods.
- LO6. Ability to design simple injection moulded part.
- LO7. Ability to perform simulation of conventional injection moulding process.

MODULE CONTENT

LECTURE	
L 1-2 – Polymers, plastics, blends, composites – materials for polymer processing	
L 3-4 – Injection moulding	
L 5-6 - Non-conventional injection moulding processes	
L 7 – Metal injection moulding	
L 8-9 – Extrusion	
L 10 – Extrusion blow moulding	
L 11 – Blown film extrusion, coextrusion	
L 12 – Calendering	1
L 13 – Casting of polymer resins	1
L 14 – Rotational moulding	1
L 15 - Fiber spinning	
L 16 – Compression moulding	
L 17 - Thermoforming	1
L 18 – Welding of plastics	1
L 19 – Polymer coatings manufacturing	1
L 20 – EPS products manufacturing, EPS cutting	
L 21-22 – Rubber processing	
L 23-24 – Rapid Prototyping	2
L 25-30 – Plastic part design	6
L 31-38 – Tool design for polymer processing	8
L 39-45 – Simulation of polymer processing – basics	7

LABORATORY	
Lab 1-2 – Identification of polymers	
Lab 3-4 – Melt Flow Rate measurement	
Lab 5-8 – Injection moulding	
Lab 9-10 – Extrusion, extrusion blow moulding	
Lab 11-12 – Compression moulding of thermoset resins	
Lab 13-14 – Thermoforming	
Lab 15-16 – EPS (Expanded Polystyrene) product manufacturing and EPS cutting	
Lab 17-18 – Welding of plastic films and other products	
Lab 19-20 – Silicone mould making	
Lab 21-22 – Casting of polymer resins	
Lab 23 – Polymer coatings manufacturing by fluidization	
Lab 24-25 – Rubber processing – compression moulding	
Lab 26-35 – Plastics part design (e.g. injection moulded part) – computer laboratory	
Lab 36-50 – Tool design (e.g. injection mould) – computer laboratory	
Lab 51-75 – Simulation of injection moulding – computer laboratory	25

TEACHING TOOLS

1 - lecture with the use of multimedia presentations

2 - stands equipped with machines and other equipment for polymer processing

3 - instructions to laboratory exercises

4 - computer laboratory, software for injection moulding simulation, software for plastic part design and tool design

SOURCE LITERATURE

- 1. Osswald T.A., Baur E., Brinkmann S., Oberbach K., Schmachtenberg E.: International Plastics Handbook, Hanser Publishers, Munich 2006.
- 2. Rauwendaal C.: Understanding Extrusion. 2nd Edition, Hanser Publishers, Munich, Hanser Publications, Cincinnati, 2010.
- 3. Davis, B., Gramann, P., Rios, A., Osswald, T.: Compression Molding, HANSER 2003.
- 4. James L. Throne: Understanding Thermoforming, HANSER 2008
- 5. Autodesk Moldflow Insight. Design and Concept. Empimeth Consult. Lublin 2010.
- 6. Glenn L. Beall, James L. Throne: Hollow Plastic Parts: Design and Manufacture, HANSER 2004.
- 7. Malloy R.A.: Plastic Part Design for Injection Molding. An Introduction, HANSER 2011.
- 8. Menges G., Michaeli W., Mohren P.: How to Make Injection Moulds, Hanser Publishers, Munich 2001.
- 9. Stoeckhert, K. Menning, G.: Mould-Making Handbook, Hanser Publishers, Munich 1998.
- 10. Beaumont J.P.: Runner and Gating Design Handbook. Tools for Successful Injection Moulding, Hanser, Munich, Cincinnati, 2004.
- 11. Michaeli W.: Extrusion dies for plastics and rubber: design and engineering computations, Carl Hanser Verlag, Munich, 2003

TEACHERS

module coordinator: prof. Elżbieta Bociąga - <u>bociaga@ipp.pcz.pl</u> academic teachers:

- prof. Elżbieta Bociąga bociaga@ipp.pcz.pl
- dr Tomasz Jaruga jaruga@ipp.pcz.pl
- dr Tomasz Stachowiak <u>stachowiak@ipp.pcz.pl</u>
- dr Paweł Palutkiewicz palutkiewicz@ipp.pcz.pl