Course name	Computational	Fluid Dyna	amics C	ode	Credit points	3
Language of instruction	English					
Programme	Computer Modelling and Simulation (CMS), Intelligent Energy (IE), Biotechnology for Environmental Protection (BI), Bussiness and Technology (BT)*					
Type of studies	BSc studies*					
Unit running the programme	Institute of Thermal Machinery					
Course coordinator and academic teachers	Andrzej Bogusławski,	Assoc. Prof., Da	ariusz Asendry	rch, Ph.D., Artu	r Tyliszczak , P	h.D
Form of classes and number of hours	Semester Lec.	Tut.	Lab.	Proj.	Sem.	Credit points
	VII 30E		30			3
Learning outcomes Prerequisites (courses)	^{**} The outcome of the course is the ability of the student to understand the basics of numerical approach to fluid dynamics problems, starting with simple examples of the flow governed by ordinary differential equations like free falling body in a viscous medium or motion of elastically fixed wing. Then fundamentals of potential flows are discussed and numerical approach including conformal method and panel methods. Finally an introduction to finite differences is presented using one-dimensional convection-diffusion equation as an example. The discretization in space is shown leading to the set of linear algebraic equations. The simplest numerical approaches to linear systems are discussed. The application of finite difference method is shown on two-dimensional problem of potential flow in complex geometry cavity and compressible one-dimensional flow in converging-diverging nozzle					
Prerequisites (mathematical tools)	Basic knowledge of differential and integration calculus, basic knowledge on ordinary and partial differential equations, concept of energy, work and heat,					
Course description	LECTURE:					
	Numerical methods for ordinary differential equations: existence and uniqueness of solution, classification of solution methods – single and multi-step methods, explicit and implicit methods, numerical errors, Taylor series expansion approach, Runge-Kutta methods, multi-step methods – Adams-Bashforth and Adams Moulton, stability and convergence					
	Numerical methods for potential flows: concept of potential flows, basic types of potential flows, complex potential, superposition principle, conformal mappin Joukowsky transformation, Christoffel-Schwarz method, source panel method, vorte					1 mapping,

panel method

	panel method			
	Finiet difference method in Computer Fluid Dynamics: Classification of second order partial differential equations, finite differences, numerical solution of linear systems – direct and iterative methods, solution of one-dimensional convection-diffusion equation – upwind corrected schemes, Lax-Wendroff and MacCormack methods			
	TUTORIALS:Not applicable			
	LABORATORY: Application of numerical methods for ODE – development of C- code solving ODE with single - and multistep methods Examples of applications of ODE in fluid dynamics: Solution of the set of equations of motion for free falling body and elastically fixed wing			
	Numerical methods for potential flows: development of the C-code for Joukowsky transformation leading to pressure distribution and lift force for Joukowsky aerofoil, Development of the C-code for source panel method - calculation of the flow field around a set of circular cylinders, development of the C-code for the vortex panel method applied to symmetric aerofoil			
	Finiet difference method in Computer Fluid Dynamics: development of the C-code solving with finite differences the potential flow in a complex geometry cavity, application of the Lax-Wendroff and/or MacCormack scheme to one-dimensional flow through the converging-diverging nozzle			
	PROJECT: Not applicable SEMINAR: Not applicable			
Form of assessment	Exam			
Basic reference materials Other reference materials	 *** 1. Wesseling P., Principles of Computational Fluid Dynamics, Springer, 2001 2. Ferziger, J.H., Peric, M., Computational Methods for Fluid Dynamics, Spinger, 2002 3. Chow : Introduction to Computational Fluid Mechanics, 4. Wendt F.W.: Computational Fluid Dynamics, Springer-Verlag, 1992 5. Stroustrup B.: The C++ Programming Language, 6. Bogusławski A., Tyliszczak A., Introduction to CFD, Politechnika Częstochowska, skrypt, 2009 For Polish-speaking students: 			
	rdinator abogus@imc.pcz.czest.pl; darek@imc.pcz.czest.pl; atyl@imc.pcz.czest.pl			

and academic teachers	abogus@imc.pcz.czest.pi; darek@imc.pcz.czest.pi; atyi@imc.pcz.czest.pi				
Average student workload (teaching hours + individ.)	4 teaching hours +3 hours of individual work per week				
Remarks:					
Updated on: 12.06. 2009					