module title:

MECHANICS OF MATERIALS & STRENGTH ANALYSIS OF CONSTRUCTION ELEMENTS

field of study:	type of study:	course code:
Mechanical Engineering	full-time	S6_2-7
course:	degree:	year: I
Modelling & Simulation in Mechanics	Master (MSc)	semester: II
type of classes: lecture, classes, laboratory	hours per week: 2L, 1C, 3Lab	No of ECTS credits: 5

MODULE DESCRIPTION

TARGETS

- **T1.** Provide theory of complex strength of materials.
- T2. Provide theory of mechanics materials .
- **T3.** To acquire capabilities to perform strength analysis of construction elements.
- **T4.** To acquire capabilities to perform laboratory test of thermomechanical properties of materials.

PREREQUISITES & ADDITIONAL REQUIREMENTS

- **R1.** Fundamentals of mechanics and strength of materials.
- **R2.** Statistics and error estimation.
- **R3.** Safety rules during the use of laboratory equipment.
- R4. Capability of using source literature.
- **R5.** Capability of individual work and collaboration in a group.
- R6. Data analysis and presentation of results.

LEARNING OUTCOMES

- LO1. Knowledge on complex strength of materials analysis.
- LO2. Knowledge on basics of mechanics of materials.
- **LO3.** Knowledge on the composition of materials structures.
- LO4. Knowledge on methods of determination of mechanical properties of materials.
- LO5. Knowledge on elastic, plastic and viscoelastic models of materials.
- LO6. Knowledge on models of the formation of micro-cracks fatigue.
- LO7. Ability to predict stress in loaded construction elements.
- LO8. Ability to test of materials properties.

MODULE CONTENT

LECTURE	hours
L1-4 - Internal forces, stress and strain tensor, constitutive relations	
L5-8 – Tension, bending, shear and torsion	4
L9-12 - Strength of materials in compound stress. Strength hypotheses	4
L13-14 - Combined stresses	2
L15-16 - Deformation of beams due to bending	2
L17-18 - Mechanical properties of materials, material isotropy and anisotropy	2
L19 -20 The structure of materials, material polycrystalline	2
L21-24 - Thermomechanical properties, methods of determination of stress and strain	4
L25-27 - Linear and non-linear materials in elastic and plastic range	3
L28-29 – Creep - the theory of viscoelastic	2
L30 – Fatigue - models of the formation of micro-cracks fatigue	1

TUTORIALS	
C 1-2 - Internal forces in prismatic bars	2
C 3-4 – Properties of a plane area	2
C 5-6 – Tension, compression and bending	2
C 7 – Eccentric tension and compression	1
C 8 - Shear and torsion	1
C 9-10 - Combined stresses – strength hypotheses	2
C 11-12 - Deformation of beams. Statically indeterminate systems – 1D and 2D problem	
C 13-14 - Castigliano-Menabrei energetic methods	
C 15 – Buckling of beams	1

LABORATORY	
Lab 1-4 - Hardness testing, (Brinell, Poldi, Rockwell, Vickers)	
Lab 5-8 - Tension test	4
Lab 9-10 - Compression test	2
Lab 11-12 – Bending test	2
Lab 13 – Impact test - Charpy	1
Lab 14-17 – Deflection test on beam	4
Lab 18-19 – Dilatometric test	2
Lab 20-23 - Measurement of stresses with bond wire strain gauges	4
Lab 24-25 - Photoelastic method for stress state analysis	2
Lab 26-28 - Determination of fatigue strength	2
Lab 27-33 –Numerical modelling of displacement in mechanically loaded bars	6
Lab 34-39 – Numerical simulations of stress and strain in element subjected to thermal load	6
Lab 40-45 – Numerical modelling of loaded systems in elastic – plastic range using stress-strain curves	6

TEACHING TOOLS

- 1 lecture with the use of multimedia presentations
- 2 experimental stands equipped with measuring instrumentation
- **3** computer laboratory, software for FEM simulation of construction
- 4 instructions to laboratory exercises

SOURCE LITERATURE

- 1. Blake A.: Handbook of Mechanics, Materials, and Structures, 1985
- 2. Silva V. D.: Mechanics and Strength of Materials, 2006
- 3. Ross Carl T.F., Case J., Chilver A., Strength of materials and Structures, Elsevier, 1999
- 4. Patnaik S., Hopkins D., Strength of Materials, A New Unified Theory for the 21 Century, Elsevier, 2004
- 5. Timoshenko S.: Strength of materials, part I, part II, Van Nostrand Company, Inc. 1956
- 6. Shigley J.: Applied Mechanics of Materials, 1976

TEACHERS

module coordinator: dr Marcin Kubiak - <u>kubiak@imipkm.pcz.pl</u> academic teachers:

- dr Marcin Kubiak <u>kubiak@imipkm.pcz.pl</u>
- dr Tomasz Domański <u>domanski@imipkm.pcz.pl</u>