Course name :				
Mathematics in modeling of engineering systems/ Selected problems of applied mathematics				
Type of study: Informatics	Type of study: Full-time	Course code: CIDM1_06		
Course characteristics:	Level:	Year: I		
Compulsory	Second (M.Sc.)	Semester: I		
Type of classes:	Hours per week:	ECTS points:		
lectures, tutorials	2 lect, 2 tut	5 ECTS		

COURSE GUIDE

AIMS

- A1. Making the students familiar with the elements of the theory and major algorithms of operations research.
- A2. Acquaint students with practical skills to formulate, solve and interpret solutions to problems in the field of operations research, in particular the linear and nonlinear programming.
- A3. Introducing the students into using the computer implementation of the presented algorithms and the use of the presented optimization packages.

PREREQUISITES

- 1. Course of elementary algebra, in particular matrix calculus.
- 2. Course of the calculus of one and several variables (course of the mathematical analysis).
- 3. Ability to use different sources of information.
- 4. Ability to work independently and in a group.
- 5. Ability to correctly interpret and present their own activities.

LEARNING OUTCOMES

- EE 1 student is familiar with the basic theory of operation research
- EE 2 student is able to independently formulate and solve operations research problems, is able to give them the proper practical interpretation,
- EE 3 student is familiar with presented optimization packages and is able to use it in solving the optimizations problems.

CONTENT

Lectures	
Lect. 1 - Course introduction. Matrices and matrix operations.	
Lect. 2 - System of linear equations.	
Lect. 3 - Introduction to the field of operations research. Basic concepts and notation. Examples of practical optimization problems. Formulating the problem and constructing a mathematical model.	2
Lect. 4 - The linear programming model. Solving linear programming problems: the Simplex method.	2
Lect. 5 - Duality theory.	2
Lect. 6 - Transportation problem.	2
Lect. 7 - Nonlinear programming problems. Convex sets, convex and	2

nonconvex functions, applications in nonlinear problems.	
Lect. 8 - Types of nonlinear programming problems. The necessary and sufficient conditions for optimality.	2
Lect. 9 - The Kuhn – Tucker thoerem, conditions for constrained optimization.	2
Lect. 10, Lect.11 - Quadratic programming.	4
Lect. 12 - Introduction to network analysis. The basic terminology of networks and graphs.	2
Lect. 13 - The network Simplex method	
Lect. 14, Lect. 15 - Project planning and control with PERT - CPM.	4
TUTORIALS	Hours
Tut. 1 - Matrix operations.	2
Tut. 2 - Application of the Gauss – Jordan method for solving system of linear equations.	2
Tut. 3, Tut.4 - Formulating the mathematical model for linear problems, primal-dual relationship.	4
Tut. 5 - Application of the Simplex method.	2
Tut. 6, Tut. 7 - A streamlined Simplex method for transportation problem	4
Tut. 8, Tut. 9 - Formulating the mathematical model for nonlinear problems, formulating and testing the conditions for optimality.	4
Tut. 10, Tut.11 - Formulating the Lagranga'e function, solving the nonlinear programming problem using the optimization packages.	4
Tut. 12, Tut. 13 - A few kind of network problems, methods of solving these problems.	4
Tut. 14 - PERT and CPM method.	2
Tut. 15 - Test.	2

TEACHING TOOLS

- 1. lectures using multimedia presentations
- 2. blackboard and chalk or whiteboards and pens

LITERATURE

Lecture notes.

Hillier F., S., Lieberman G., J., *Introduction to operations research*, McGraw-Hill, Inc. 1990

Forst W., Hoffman D., *Optimization – Theory and Practise*", Springer Science + Business Media, 2010

Polyanin A. D., Manzhirov A. V., "Handbook of Mathematics for Engineers and Scientists", Chapman & Hall/CRC, Taylor & Francis Group, 2007

TEACHERS

1. dr Anita Ciekot, anita.ciekot@im.pcz.pl

ADDITIONAL NOTES

Links to course unit teaching materials can be found on the http://iisi.pcz.pl/ClaDM/ website for current students.