Course name: Knowledge bases and expert systems in economy						
Type of study: Computer Science	Type of study: Full-time		Course code:			
Course characteristics:: Mandatory within the additional content	е	Level: Second (M.Sc.)	Year: Semester:			
Type of classes lectures, labolatories		Hours per week: 2lect, , 2lab	ECTS points: 5 ECTS			

COURSE GIIDE

AIMS

- C1. Informing the students about expert system structures, methods of procedure algorithms creation, tools for their creation. Expert system algorithm analysis with regarding economic needness and problems.
- C2. Knowledge needed to decisions suport and their optimization.
- C3. Skills in improvement knowledge base structures (by removing contradictions and redundations).

PREQUISITES

- 1. Knowledge of economic, logistic, plan decision pragmatics and problems.
- 2. Based knowledge of algorithm creation and programming.
- 3. Ability to form criteria and constrains in decision process.
- 4. Ability to individual and grouped work.
- 5. Ability to interpret effects and results of program realization.
- 6. Ability to form and present conclusions and recapitulation.
- 7. Ability to literature exploration and study.

LEARNING OUTCOMES

- EK 1 has basic knowledge in area of expert system priorities in comparison with traditional computer systems,
- EK 2 has a basic knowledge about stages of expert system creation,

- EK 3 has basic knowledge about tools and specialists designing knowledge bases,
- EK 4 knows the convention of rules creation in inferring mechanism.
- EK 5 able to select appropriate approach to analysis the possibility of improvement knowledge bases structure,
- EK 6 able to select and adopt model of expert system to given economic problem,
- EK 7 can tested effectiveness and scale of optimization in applied in implementation procedures methods.

CONTENT

Lectures	Hours
W1 – Introduction to expert system + economic adaptations	
W2 – Structure and classification of expert system	
W3 – Knowledge bases structure and parameters	
W4 – System functions, rules and inferring procedures	
W5 – Parameters and type of inferring methods	
W6 – Real time expert systems	
W7 – Semiotic aspects of inferring structures	
W8 – Tools of expert system creation	
W9 – Knowledge exploration and its presentation	4
W10 – Additional ways of expert system problem resolving improvements	2
Laboratories	
L1 – inferring mechanism creation	
L2 – game strategy description and modeling in systems	
L3 – optimization in transport problem	
L4 – artificial intelligence in expert system	
L5 - production planning optimization in expert system	
L6 – prognosis procedures in expert system creation	

L7 – learning process in expert system	
L8 – cell automata in prognosis system	
L9 – decision support based on Saaty matrix	
L10 – market game and equilibriums	

TEACHING TOOLS

1. – lectures using media presentations	
2. – blackboard and chalk whiteboards	
3 laboratory guides	
4 report from laboratory activities	
5. – computers with software	

LITERATURE

1. Forsyth R.: Expert System. Pronciples and Case Studies, Chap. and Hall, London, 1984	
2. Ignizio J.P.: An Introduction to Expert Systems, McGraw-Hill, New York, 1991	
3. Devis R., Lenat D.B.: Knowledge-Base Systems in Artificial Intelligence, New York, 1982	
4. Nebendahl E.:Expert Systems, J.Wiley and Sons Inc., Berlin, 1988	
5. Waterman D.A.: A Guide to Expert Systems, A-W Publ. Comp., London, 1986	
6. Addis T.R.: Designing Knowledge- Besesd Systems, Kogan Page, London, 1985	

TEACHERS

1. prof. Henryk Piech h.piech@adm.pcz.czest.pl