module title: Kinematics, Vibrations & Stability of Mechanical Systems

field of study:	type of study:	course code:
Mechanical Engineering	full-time	S6_2-8
course:	degree:	year: I
Modelling & Simulation in Mechanics	Master (MSc)	semester: II
type of classes: lecture, laboratory	hours per week: 2L, 3Lab	No of ECTS credits: 5

MODULE DESCRIPTION

TARGETS

- **T1.** Provide the basic knowledge on modeling and simulation of machines and mechanisms.
- T2. Provide practical skills in the use of CATIA.
- **T3.** Provide the basic knowledge on mechanical vibrations of damped and undamped systems with limited number of independent variables and continuous systems.
- T4. Provide the basic knowledge on criterions of stability
- **T5.** Ability to determine critical load, free vibrations frequency and free vibrations modes of slender systems

PREREQUISITES & ADDITIONAL REQUIREMENTS

- **R1.** Fundamentals of mechanics and mathematics.
- **R2.** Capability of individual work and collaboration in a group.
- R3. Data analysis and presentation of results.

LEARNING OUTCOMES

- **LO1.** Theoretical and practical knowledge in use of CATIA software.
- LO2. Creates 3D model by means of CATIA software.
- LO3. Designs mechanisms of different levels.
- **LO4.** Analysis and synthesis of mechanisms and machines with kinematic joints with different level of degrees of freedom.
- LO5. Writes reports on the basis of performed simulations.
- **LO6.** Theoretical knowledge in mechanical vibrations.
- **LO7.** Ability to determine free vibrations frequency of damped and undamped mechanical systems.
- **LO8.** Ability to determine free vibrations modes of damped and undamped mechanical systems.
- **LO9.** Theoretical knowledge in criterions of stability.
- **LO10.** Ability to determine critical force of slender system on the basis of static and kinetic criterion of stability.

TEACHERS

module coordinator: dr Sebastian Uzny, assoc. prof. - <u>uzny@imipkm.pcz.pl</u> academic teachers:

- dr Sebastian Uzny, assoc. prof. <u>uzny@imipkm.pcz.pl</u>
- dr Krzysztof Sokół <u>sokol@imipkm.pcz.pl</u>

MODULE CONTENT

LECTURE	
L 1-3 – Operations in <i>Part</i> Design.	
L 4-6 – Operations in Assembly Design.	
L 7-13 – Introduction to DMU Kinematics.	
L 14-15 – Introduction to <i>Drafting.</i>	
L16 – Basic concepts of vibrations problem	
L17 – Equations of motion of individual mechanical system with single number of independent variables	
L18,19 –Single degree of freedom system (free vibrations, forced vibrations, passage through resonance)	
L20,21 – Dumped vibrations of the single oscillator (free vibrations, forced vibrations)	2
L22,23 – Vibrations of two-degree of freedom system (two pendulums connected with spring)	
L24 – Vibrations of double pendulum	
L25,26 – Vibrations of beam as a continuous system (Hamilton principle, boundary conditions, free vibration frequencies of beam)	
L27 – Modes of free vibrations – beam systems	
L28,29 – Influence of compressive force on vibrations of columns (kinetic criterion of stability)	
L30 – Vibrations of non-conservative system (Beck's column)	1

LABORATORY		
Lab 1-6 – Part Design - modeling problems.		
Lab 7-10 – Basic modeling of mechanisms – assemblies.		
L 11-14 – Simulation and motion analysis – block on the inclined plane.		
Lab 15-18 – Simulation and motion analysis – Geneva drive.		
Lab 19-22 – Simulation and motion analysis – clash detection.		
Lab 23-26 – Simulation and motion analysis – planetary drive.		
Lab 27-30 – Technical documentation in CATIA – <i>Drafting</i> module.		
Lab 31-33 – dumped and undamped vibrations of a single degree of freedom system (different initial conditions)		
Lab 34-36 – determination of free vibrations frequency of beam (different boundary conditions)		
Lab 37-39 – determination of modes of free vibrations of beam (different boundary conditions)		
Lab 40-42 – characteristic curves in the plane: external load - natural frequency		
Lab 43-45 – regions of divergence and flutter instability of generalized Beck's column		

TEACHING TOOLS

2 - computer laboratory, engineering software – CATIA, MathCad, Mathematica

3 - samples of laboratory exercises

SOURCE LITERATURE

1. Nader Zamani CATIA V5 FEA Tutorials,2008

2. Jaecheol Koh CATIA V5 Design Fundamentals: A Step by Step Guide, 2010

3. CATIA – technical documentation.

4. L. Meirovitch: Fundamentals of Vibrations, McGraw-Hill Higher Education, 2001

5. Rao V. Dukkipati, J. Srinivas: Textbook of Mechanical Vibrations, Prentice-Hall of India Private Ltd, New Delhi, 2004