Course name:								
Evolutionary algorithms & search strategies								
Field of study:	Type of study:		Sourse code:					
Computer science	Full-time		CIDM1_02					
Course characteristics:		Level:	Year: I					
Mandatory within the additional		Second (M.Sc.)	Semester: I					
content		Computational Intelligence and Data Mining						
Type of classes:		Hours per week:	ECTS points amount:					
lectures, laboratories, project		2 lect, 2 lab, 1 proj	5 ECTS					

COURSE GUIDE

AIMS

- A1. Introducing the students to the evolutionary algorithms and search strategies.
- A2. Obtaining by the students the practical skills in the field of evolutionary algorithms and search strategies.

PREREQUISITES

- 1. Knowledge of mathematics and basics of computer science.
- 2. Basic knowledge of probability theory and mathematical statistics.
- 3. Basic knowledge in the field of optimization theory.
- 4. Basic knowledge and skills in the field of computer programming.
- 5. Ability to use different sources of information and technical documentation.
- 6. Ability to work independently and in a group.
- 7. Ability to correctly interpret and present their own activities.

LEARNING OUTCOMES

EK 1 – Students will possess basic theoretical knowledge in the field of evolutionary algorithms and search strategies.

- EK 2 Students will possess knowledge about different types of evolutionary algorithms.
- EK 3 Students will know how to apply evolutionary algorithms to different problems.
- EK 4 Students will be familiar with applications of evolutionary algorithms in hybrid intelligent systems.
- EK 5 Students will be able to solve various optimization problems, working independently and in a group.
- EK 6 Students will be able to present results of their work, with correct interpretation, using proper sources of information and documentation.

CONTENT

Lectures		Hours
Lect. 1	Introduction to the basic genetic algorithm	2
Lect. 2	Optimization problems and search strategies	2
Lect. 3	Different types of evolutionary algorithms	2
Lect. 4	Applications of evolutionary algorithms	2

Lect. 5	Encoding and genetic operators	2
Lect. 6	Fitness functions	2
Lect. 7	Selection methods	2
Lect. 8	Mutation and crossover	2
Lect. 9	Convergence of the genetic algorithm	2
Lect. 10	Parameters of the evolutionary algorithms	2
Lect. 11	Evolution strategies	2
Lect. 12	Evolutionary programming	2
Lect. 13	Genetic programming	2
Lect. 14	Swarm intelligence and other optimization techniques	2
Lect. 15	Evolutionary algorithms in hybrid intelligent systems	2
Laborator	ies	Hours
Lab. 1	Software overview	2
Lab. 2	Basic genetic algorithm in MATLAB	2
Lab. 3	Optimization problems in MATLAB	2
Lab. 4	Modifications of the basic genetic algorithm	2
Lab. 5	Genetic algorithm in EXCEL	2
Lab. 6	Evolutionary algorithms in VBA	2
Lab. 7	Various applications of evolutionary algorithms	2
Lab. 8	Traveling salesman problem	2
Lab. 9	Example of multi-objective optimization	2
Lab. 10	Example of optimization with constraints	2
Lab. 11	Example of scheduling problem	2
Lab. 12	Application to neural network learning	2
Lab. 13	Genetic programming in LISP	2
Lab. 14	Evolution strategies in MATLAB	2
Lab. 15	Evolutionary programming	2
Projects		Hours
Proj. 1	Sorting by use of an evolutionary algorithm	1
Proj. 2	Resource allocation problem solved by an evolutionary algorithm	2
Proj. 3	Knapsack problem solved by an evolutionary algorithm	2
Proj. 4	Class schedule created by use of an evolutionary algorithm	3
Proj. 5	Job shop scheduling problem solved by an evolutionary algorithm	2
Proj. 6	Bin packing problem solved by an evolutionary algorithm	2
Proj. 7	Routing with constraints problem solved by an evolutionary algorithm	3

TEEACHING TOOLS

- lectures using multimedia presentations
- 2. blackboard and chalk or whiteboards and pens
- 3. laboratory guides and tutorials
- **4.** reports from laboratory activities (paper and electronic versions)
- **5.** computer stations with software

LITERATURE

- 1. Michalewicz Z., Genetic Algorithms + Data Structures = Evolution Programs, Springer, 1992.
- 2. Goldberg D.E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, 1989.
- 3. Davis L. (Ed.), Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, 1991.
- 4. Mitchell M., An Introduction to Genetic Algorithms, The MIT Press, 1996.
- 5. De Jong K., Evolutionary Computation: A Unified Approach, The MIT Press, 2006.

6. Fogel D.B., Evolutionary Computation: Towards a New Philosophy of Machine Intelligence, IEEE Press, New York, 1995.

7. Koza J.R., Genetic Programming: On the Programming of Computers by means of Natural Evolution, MIT Press, Massachusetts, 1992.

8. Beyer H.-G., Theory of Evolution Strategies, Springer-Verlag, 2001.

9. Simon D., Evolutionary Optimization Algorithms, Wiley, 2013.

TEACHERS

1. prof. Danuta Rutkowska, danuta.rutkowska@icis.pcz.pl