Code	V.2.
Course Title (English)	Engineering Design IV –Machine Maintenance and Diagnostics
Course Title (Polish)	Konstrukcja i eksploatacja maszyn oraz grafika inż. IV – Podstawy eksploatacji i diagnostyki maszyn
Credits	7 ECTS

Language of instruction English

ProgrammeComputer Modelling and Simulation, Intelligent Energy, Biotechnology for
Environmental ProtectionType of studiesBSc studies

Unit running the
programmeInstitute of Thermal Machinery, Institute of Mechanics and Machine DesignFundamentals

Course coordinator and Witold Elsner, Prof., Witold Elsner Prof., (Lec.), Paweł Waryś, PhD. (Tut.), Darek Asendrych, Artur Dróżdż (Lab.)

Form of classes and number of hours	Semester	Lec.	Tut.	Lab.	Proj.	Sem.	Credit points
	5	30e	15	45	-	-	7

Learning outcomes The outcome of the course is the ability of the student to understand the principles of machine maintenance and diagnostics. Students will gain the knowledge on the role or maintenance organisation and about the financial implication as well as cost justification. The further outcome is the knowledge on the diagnostic schemes and methods as well as machine common malfunctions and methods for their identification. The further outcome is the knowledge on the engineering design and application of SolidWorks for simulation and design validation.

Prerequisites Basic knowledge of mathematics and statistics, basics of engineering physics including mechanics, strength of materials and mechanical vibrations

Course descriptionLECTUREMaintenance – basic definition. History of maintenance. Total predictive maintenance.
Maintenance schemes. Financial implication and cost justification. Benefits of predictive
maintenance. Condition monitoring. Off- and on- line systems. Vibration transducers
characteristics. Diagnostic basic definition and diagnostic methods of machinery.
Diagnostic parameters. Non-destructive tests (NDT) methods. Fundamentals of
vibrations. Design and operation of vibration transducers. Data analysis and visualisation
methods. Time base plots. Basis of FFT analysis. The orbit plot. Polar and Bode plots.

Machine dynamics. Dynamic stiffness and rotor behaviour. Modes of vibration. Definition of machine malfunctions. Unbalance. Rotor bow. Radial loads and misalignment. Rub and looseness. Fluid-induced instability. Others malfunctions. Machinery condition evaluation vibration standards. Basis of trend monitoring and forecasting.

TUTORIALS: see lecture content

LABORATORY

Correlation analysis of vibration signals. Spectral analysis of vibration signals. Spectral leakage and window functions. Vibration measurement of rotating machinery. The rules of vibration transducers installation. Relative and absolute phase. Balancing of rotor systems. Identification and measurements of rotor critical speed. Fluid-induced instability of hydrodynamic bearings. Analysis of the natural frequency of blades. Diagnosis of gear drive. SolidWorks Simulation Overview. Concepts of Stress Analysis. Assembly of Multiply Elements Connections. Mesh Control in SolidWorks Simulation. Validate the design revision. Solid stress analysis. Finite element vibration studies. Motion simulation of mechanisms.

PROJECT Not applicable

SEMINAR Not applicable

Exam

Form of assessment

Basic reference materials		Dihillon B.S., Maintainability, maintenance and reliability for engineers, Taylor & Francis Group, 2006			
	2.	R. Keith Mobley, An introduction to Predictive maintenance, 2002, Elsevier Science (USA)			
	3.	Bently D.E., Hatch Ch.T., Fundamentals of Rotating Machinery Diagnostics ((Design and Manufacturing) Am.Soc.of Mech. 2003			
	4.	Mitchell J.S.: An introduction to machinery analysis and monitoring Penn Well Books, 1993			
	5.	R.C.Sr.Eisenmann: Machinery Malfunction Diagnosis and Correction Vibration, Analysis and Troubleshooting for the Process Industries, Prentice Hall, 1997			
Other reference materials	For Polish-speaking students:				
	2. 3.	Orłowski Z.: Diagnostyka w życiu turbin parowych. WNT, Warszawa, 2001 Cholewa W.; Diagnostyka techniczna maszyn. Wyd. Pol. Śl., Gliwice, 1992 Wiśniewski W.: Diagnostyka techniczna wytwórczych urządzeń energetycznych w elektrowniach, PWN, Warszawa 1991			

e-mail of the course coordinator and academic teachers	welsner@imc.pcz.czest.pl
Average student workload (teaching hours + individ.)	6 hours of teaching hours + 4 hours of individual work per week
Remarks:	
Updated on:02.02.2015	