Course name : Embedded systems programming			
Field of study: Computer science	Type of study: Full-time	Course code:	
Course characteristics: Mandatory on specialisation: programming engineering	Level: First	Year: IV Semester: VII	
Type of classes: lectures, laboratories	Hours per week: 2 lect, 2 lab	ECTS points: 6 ECTS	

COURSE GUIDE

AIMS

- A1. To introduce students into advanced embedded systems programming by a complex applications implementation
- A2. To acquire the practical skills in using software environments for designing, programming, running, testing and debugging complex application for embedded systems

PREREQUISITES

- 1. Knowledge of mathematics, digital techniques and basic programming.
- 2. Being acquired with electrostatic safety conditions.
- 3. Ability to perform mathematical operations for micro controller peripheral selection.
- 4. Ability to use different sources of information and technical documentation.
- 5. Ability to work independently and in a group.
- 6. Ability to correctly interpret and present their own activities.

LEARNING OUTCOMES

- EE 1 has knowledge how to implement complex applications in embedded systems,
- EE 2 knows programming environments to be used in complex applications for embedded system designing and programming,
- EE 3 knows selected micro controllers in terms of their hardware and programming possibilities,
- EE 4 is able to design a logical structure of the programme to implement tasks in selected application,
- EE 5 is able to use a software environment to write, compile, run, test and debug a complex programme
- EE 6 is able to prepare a report about implemented tasks.

CONTENT

Lectures	Hours
Lect. 1 - Introduction to the advanced embedded systems	
Lect. 2 - Memory in embedded systems. Memory architecture.	

Lect. 3 - Influence of software on hardware design. Migration of software to a new processor architecture.	2
Lect. 4 - CPU selection for an application requirements.	
Lect. 5 - New technologies for embedded systems development.	2
Lect. 6 - Programming environment selection. Eclipse as a practical option of open programming environment.	
Lect. 7 -C and C++ programming aspects.	2
Lect. 8 - Real time systems.	2
Lect. 9 - Real time operating systems.	
Lect. 10 - Embedded systems networking.	
Lect. 11 - Programable logic in embedded systems.	
Lect. 12 - Programming for exotic memories.	2
Lect. 13 - Auto testing in embedded systems.	2
Lect. 14 - User interface components in embedded systems.	2
Lect. 15 - Application examples.	2
LABORATORIES	Hours
Lab. 1 - Advanced functions in the µVision environment.	2
Lab. 2 - Advanced procedures examples.	
Lab. 3 - Advanced measurement function with use of timers.	
Lab. 4 - EA and CA PWM generation.	
Lab. 5 - 32-bit application project. Application selection, project requirements.	2
Lab. 6 - Project implementation	2
Lab. 7 - Project implementation cont.	2
Lab. 8 - Project implementation cont.	2
Lab. 9 - Project implementation cont.	2
Lab. 10 - Project implementation cont.	2
Lab. 11 - Project implementation cont.	2
	2
Lab. 12 - Project implementation cont.	_
Lab. 12 - Project implementation cont. Lab. 13 - Project presentation. Discussion of implementation options.	2

TEACHING TOOLS

- 1. lectures using multimedia presentations
- 2. blackboard and chalk or whiteboards and pens
- 3. laboratory guides
- 4. reports from laboratory activities
- 5. computers with software

LITERATURE

Colin Walls: "Embedded Software: The Works", Elsevier, Boston, 2006,

Zurawski R.:"Embedded Systems" CRC Press 2006,

Wayne Wolf: "Computers as Components: Principles of Embedded Computing System Design" Morgan & Kaufman 2000,

Stephen A. Edwards: "Languages for Digital Embedded Systems" Kluver, 2000,

Marwedel P.: "Embedded System Design" Kluwer Academic Publishers, Boston 2003.

TEACHERS

1. dr Jerzy Jelonkiewicz, jerzy.jelonkiewicz@iisi.pcz.pl