Course title:					
Computer modeling of water supply and sewage systems					
Programme:	Code:				
Environmental Engineeri					
Type of course:	Course level:	Semester:			
module 5.2	II	II			
Form of classes:	Number of hours per	Creditpoints:			
Lectures, project	week/meeting:	4			
	2W, 2P				
Education profile:	Course language:				
		english			

GUIDE TO THE SUBJECT

I. COURSE CHART

COURSE OBJECTIVES

C.1. Gainknowledgein the use of computer programs to design newsystems and analysis of existing water supply and sewer systems

C.2. The ability to create a simulation model of the sewage system and water supply

PRELIMINARY COURSE REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Basic knowledge ofwater supply and wastewatersystems
- 2. Basic knowledge inhydrology

LEARNING OUTCOMES

- **EK 1 -** Has general knowledge of the application of numerical models to the design, rehabilitation and operation of wastewater and water supply systems
- **EK 2 -** Ability to create the model of wastewater and water supply system along with their basic elements (conduits, overflows, storage tanks, etc.),
- **EK 3 -** Ability to identify and properly assume the most important parameters of the object models, and interpret the simulation results

Form of classes - lectures	Hours
W 1, W 2 – Introduction. Classification of models, an overview of the software.	2
W 3, W 4 – Principles of mapping the sewerage systems in computer models	2
W 5, W 6 – Modelling stormwaters (rainfall) and wastewaters	2
W 7, W 8 – Modelling of surface runoff	2
W 9, W 10 – Hydraulics of pipes	2

COURSE CONTENT

W 11, W 12 – Modeling of storage reservoirs and infiltration devices	2
W 13, W14 – Modeling of overflows, flow regulators and pumping stations	2
W 15, W16 – Modeling of the wastewates quality	2
W 17, W18 – Analysis of simulation results . Rating errors modeling	2
results	
W 19, W20 – Calibration and verification of the models	2
W 21, W 22 – Principles of of water supply system modelling	2
W 23, W 24 – Water demand and flows in the supply network	2
W 25, W 26 – Water reservoirs and pumping stations	2
W 27, W 28 – Test on knowledge	2
W 29, W 30 – Future challenges of water and wastewater modelling	2
Form of classes - project	Hours
P 1, P 2 – Introduction to software (SWMM5 and EPANET2)	2
$P 3 \div P 6$ – Implementation of the sewerage network model (nodes,	4
conduits)	
$P 7 \div P 10 - Model of the urban catchment. Surface runoff.$	4
P 11, P 12 –Stormwater and wastewater flows. Rainfall data aquition and	2
analysis	
P 13, P 14 – Presentation and analysis of the simulation results in SWMM5	2
P 15, P 16 – Modeling of combined sewer overflows	2
P 17, P 18 – Modeling of storage tanks and infiltration devices in drainage	2
systems	
P 19, P 20 – Modeling of sewage pumping stations	2
P 21 ÷ P 24 – Implementation of the water supply network model. Water	2
demand.	
P 25, P 26 – Water reservoirs. Pumping stations	4
P 27, P 28 – Presentation and analysis of the simulation results in	2
EPANET2	
P 29, P 30 – Completion of the course	2

COURSE STUDY METHODS

1. Lecturesusing multimedia presentations

2. Classes in computer room using EPA software: SWMM5 and EPANET2

METHODS OF ASSESMENT (F - formative; S - summative)

F1. – Aassessment of preparation for classes
F2. – Evaluation of the particular parts of projects
S1. – Evaluationof the final test
S2. – Evaluation of the projects

STUDENT WORKLOAD

Form of activity	Workload (hours)
Lectures	30
Project	30
Preparation for project	5
Creation of project	25
Consultation hours	10

Total	∑100 h
Total ECTS	ECTS 4

PRIMARY AND SUPPLEMENTARY TEXTBOOKS

James W., Rossman L., Huber W., Dickinson R., Roesner L., Aldrich A., User's guide to SWMM5, CHI, Ontario, 2008

Environmental Protection Agency, 2005, SWMM 5users manual, Cincinnati

Environmental Protection Agency, 2000, Epanet 2 users manual, report EPA600R-00/057, Cincinnati

Walski T, Barnard T, 2004, Wastewater Collection System Modeling and Design

Mrowiec M., 2009 – Efektywne wymiarowanie i dynamiczna regulacja kanalizacyjnych zbiorników retencyjnych, Wydawnictwo politechniki Częstochowskiej, Częstochowa

SUBJECT COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

1. dr hab. inż. Maciej Mrowiec, mrowiecm@is.pcz.czest.pl

NAME OF LECTURER (s) (NAME, SURNAME, E-MAIL ADDRESS)

1. dr hab. inż. Maciej Mrowiec, mrowiecm@is.pcz.czest.pl

Learning outcome	In relation to the learning outcomes specified for the field of study	Course objectives	Course content	Course studyme thods	Methods of assesment
EK 1	K_W28	C.1	W1÷W30	1	F1, P1
EK 2	K_U33	C.2	P1÷P5, P7, P8, P15, P17, P19, P21÷P24, P29÷P30	2	F2,P2
EK 3	K_U33	C.2	P6, P9, P11÷P14 P25÷P30,	2	F2,P2

II. EVALUATION

Learning	Mark 2	Mark 3	Mark 4	Mark 5
outcomedescrip				
tion				
EK 1 - Has	Has	Has	Hasknowledge of	Hascompleteknowle
general	noknowled	knowledge	thegeneralrules for the	dgein the field
knowledge of the	ge in	of	operation of sewer and	ofmodelingof
application of	themodelin	theclassificat	water supply networks	sewage and water
numerical models	gof sewer	ion	modelsandtheircalibrationp	supply systems
to the design,	and water	ofsimulation	rocess	
rehabilitation and	supplysyste	models and		

operation of wastewater and water supply systems	ms	their purposes		
EK 2 - Ability to create the model of wastewater and water supply system along with their basic elements (conduits, overflows, storage tanks, etc.),	Is not able to create basic model of water supply and sewage systems.	Has ability to create a network model of water supply and sewage systems containing only conduits and nodes	Has ability to create a network model of water supply and sewage systems containing conduits and nodes and one additional element (i.e. storage tank)	Is able to create a complete model of water supply and sewage systems.
EK 3 - Ability to identify and properly assume the most important parameters of the object models, and interpret the simulation results	Cannot determineth e basic parameters forthe model objects	Canidentify most of theparameter s of the model objects	Has ability to identifymost of theparameters of the model objects and to present the main results of the modeling	Canidentify all relevantparameters ofthe model objectsandmake alogicalinterpretatio n of obtained results

III. OTHER USEFUL INFORMATION

- 1. All the information on the class schedule is posted on the student information board and online at: <u>www.is.pcz.pl</u>
- 2. The information about the consultation hours is provided to students on the first class meeting and posted online at...
- 3. The information on course completion and grade is provided to students on the first class meeting.