module title:				
ANALYTICAL MECHANICS				
field of study: Mechanical Engineering	type of study: full-time	course code: S6_2-5		
course: Modelling & Simulation in Mechanics	degree: Master (MSc)	year: I semester: I		
type of classes: lecture, classes, EXAM	hours per week: 2L, 2C	No of ECTS credits: 5		

MODULE DESCRIPTION

TARGETS

- **T1.** Provide a mathematically sophisticated reformulation of Newtonian mechanics and build up a good foundation in analytical mechanics.
- **T2.** Learn how to set up Lagrangian equations and obtain the equations of motion in generalized coordinates.
- **T3.** Provide an introduction to the Hamiltonian formulation of dynamics.
- **T4.** To acquire capabilities to perform analysis of the classic mechanical phenomena.
- **T5.** Solve variety of problems analytically and systematically with confidence.

PREREQUISITES & ADDITIONAL REQUIREMENTS

- R1. Fundamentals of Newtonian mechanics, basic knowledge of differential calculus,
- **R2.** Fundamentals of vector algebra and dynamics.
- R3. Capability of using source literature.
- R4. Capability of individual work and collaboration in a group.
- **R5.** Analysis and presentation of results.

LEARNING OUTCOMES

- **LO1.** Knowledge on how to manipulate vectors fluently, including use of scalar and vector products and time-differentiation thereof.
- **LO2.** Knowledge on constraints, generalized coordinates, velocities and accelerations.
- LO3. Knowledge on calculus of variations and the concept of virtual displacement.
- LO4. Knowledge on how to derive and apply Lagrange's equations.
- **LO5.** Knowledge on the constrained Lagrangian dynamics and the concept of Lagrange multipliers.
- LO6. Knowledge on dissipative systems and the idea of Rayleigh dissipation function.
- **LO7.** Knowledge on how to derive and apply Hamilton's equations.

TEACHERS

Module coordinator: prof. Jacek Przybylski - <u>j.przybylski@imipkm.pcz.pl</u> Academic teachers:

prof. Jacek Przybylski - j.przybylski@imipkm.pcz.pl

dr Tomasz Skrzypczak - <u>t.skrzypczak@imipkm.pcz.pl</u>

MODULE CONTENT

LECTURE	hours
L1-4 - Introduction to analytical mechanics. Vectors and their products (revision). Time-derivatives of vectors and their products. Work and kinetic energy.	4
L5-8 - Classification of constraints. Generalized coordinates, velocities and accelerations. Configuration space and its transformation. Virtual displacement.	4
L9-10 - Ideal constraints. Virtual work principle. A particle sliding without friction on a rotating ellipse.	2
L11-12 - D'Alembert's principle. Hamilton's principle.	2
L13-18 - Lagrange's equations. Equations of motion of holonomic systems with one and two degrees of freedom. Atwood machines. Sliding down a sliding plane.	6
L19-22 - Nonholonomic systems. Lagrange multipliers. Spherical pendulum.	4
L23-26 - A cylinder rolling down an inclined plane. Dissipative systems.	4
L27-28 - Hamilton's canonical equations.	2
L29-30 - Hamilton's equation of motion for a one-dimensional harmonic oscillator and for a particle in a central field.	2

TUTORIALS	hours
C 1-2 - Derivative of a composite function. Chain rule. (revision)	2
C 3-4 - Introduction to analytical mechanics. Classification of constraints.	2
C 5-8 - Generalized coordinates, velocities and accelerations.	4
C 9-10 - Generalized forces.	2
C 11-12 - Work and kinetic energy.	2
C 13-16 - Virtual displacement. Ideal constraints. Virtual work principle.	4
C 17-20 - D'Alembert's principle.	4
C 21-24 - Lagrange's equations Equations of motion of holonomic systems with one and two degrees of freedom.	4
C 25-26 - Hamilton's principle.	2
C 27-30 - Hamilton's canonical equations.	4

TEACHING TOOLS

1 - lecture with the use of multimedia presentations
2 - tutorials

SOURCE LITERATURE

1.	Fasano A., Marmi S.: Notes on Analytical Mechanics. Oxford University Press, 2006
2.	Chaichian M., Merches I., Tureanu A.: Mechanics: An Intensive Course. Springer-Verlag, Berlin Heidelberg, 2012
3.	Fowles G. R., Cassiday G. L.: Analytical Mechanics. Cengage Learning, 7 edition, 2004
4.	Meirovitch L.: Analytical Methods in Vibrations, Macmillan Company New York, 1967, reprinted by Pearson Education POD 1997

5. Tőrők J.: Analytical Mechanics. John Wiley & Sons Inc., New York, 2000