course title:

ADVANCED FLUID MECHANICS

Zaawansowana mechanika płynów

field of study:	type of studies:	course code:
Mechanical Engineering	regular	S4_2
specialization:	level:	year: I
Energy engineering	MSc	semester: I
types of classes:	hours/week:	No of ECTS credits:
lecture, laboratory	2Lec ^E , 2Lab	6

COURSE DESCRIPTION

COURSE TARGETS

- C1. Provide theory of potential flows
- C2. Provide theory of boundary layer.
- C3. To acquire capabilities to perform experimental-numerical analysis of the flow field.

ENTRY REQUIREMENTS IN TERMS OF KNOWLEDGE, CAPABILITIES AND COMPETENCES

- 1. Fundamentals of mechanics, thermodynamics and fluid mechanics.
- 2. Statistics and error estimation.
- 3. Safety rules during the use of laboratory equipment.
- 4. Capability of using source literature.
- 5. Capability of individual work and collaboration in a group.
- 6. Data analysis and presentation of results.

EFFECTS OF TEACHING

- EK1. Knowledge on elementary potential flows
- EK2. Knowledge on superposition of elementary flows
- EK3. Knowledge on lift generation in flows around airfoils
- EK4. Knowledge on laminar-turbulent transition
- EK5. Knowledge on the structure of turbulent boundary layer
- EK6. Knowledge on boundary layer separation and its consequences to flow quality
- EK7. Ability to predict the flow pattern and the form drag coefficient

COURSE CONTENT

LECTURE	hours
W1-6 - Elements of potential flow theory, velocity potential, the stream function and flow net, elementary flows (uniform flow, stagnation flow, two-dimensional source, potential vortex, double source and a doublet)	
W7-10 - Superposition of elementary flows - a sample solution, complex potential of two- dimensional irrotational flows, complex potential applied to elementary flows (uniform flow, two dimensional source, two-dimensional potential vortex, the double source and a dipole),	
W11-15 - Potential flow around a cylinder, potential flow around a cylinder with circulation, flows past streamlined bodies.	5
W16-17 - Boundary layer (BL), definition, properties, characteristic parameters. BL development on a flat surface, laminar-turbulent transition. Laminar BL, velocity distribution, frictional drag force and its coefficient.	
W18-19 - Turbulent BL, power law of velocity profile, frictional drag force and its coefficient.	
W20-21 - Momentum transfer in turbulent BL, logarithmic velocity profile, viscous sublayer, surface roughness and its influence on frictional drag force coefficient.	2
W22 - Multi-zonal model of turbulent BL	
W23-24 - Form drag, streamlined bodies, BL separation, bluff bodies, wakes, drag force coefficient.	
W25-27 - Flow evolution upon an adverse pressure gradient, BL separation. Flow around the cylinder. Sub- and supercritical flow pattern, drag crisis, drag force coefficient versus Reynolds number.	
W28-29 - Control of BL separation, suction, injection.	2
W30 - Blasius equation and its solution for the flow in a laminar BL	
LABORATORY	
L 1-4 - Numerical analysis of elementary potential flows	4
L 5-8 - Superposition of elementary potential flows	
L 9-10 - Determination of integral parameters of boundary layer	
L 11-14 - Flow modelling in a laminar boundary layer	
L 15-18 - Determination of multilayer structure of turbulent boundary layer	
L 19-22 - Experimental investigation of a drag force coefficient of a bluff bodies	
L 23-26 - Numerical simulation of a boundary layer separation	
L 27-30 - Experimental analysis of a von Karman vortex path	

TEACHING TOOLS

1 - lecture with the use of multimedia presentations
2 - experimental stands equipped with measuring instrumentation
3 - computer laboratory, software for fluid flow simulation
4 - instructions to laboratory exercises

STUDENT LOADING

activity	hours
contact hours with teachers	$30Lec + 30Lab \rightarrow 60h$
reading	15 h
preparation to lab exercises	15 h
writing reports	30 h
preparation to exam	30 h
Suma	Σ 150 h

SOURCE LITERATURE

- 1. R.J. Goldstein: Fluid mechanics measurements. Taylor & Francis, 1996
- 2. Durst F.: Fluid Mechanics. An introduction to the theory of fluid flows. Springer-Verlag, Berlin, 2008

3. J.W. Elsner, S. Drobniak: Metrologia turbulencji przepływów. Ossolineum, Wrocław, 1995

4. Schlichting H., Gersten K.: Boundary layer theory. Springer, 2000

5. Mathieu J., Scott J. : An introduction to turbulent flows. Cambridge University Press, 2000

6. Kundu P., Cohen I.: Fluid mechanics. Academic Press, 2010

7. Pope S.: Turbulent flows. Cambridge University Press, 2000

8. Drobniak S., Elements of Potential Flow Theory

TEACHERS

- 1. prof. Stanisław Drobniak drobniak@imc.pcz.czest.pl
- 2. dr inż. Dariusz Asendrych <u>darek@imc.pcz.czest.pl</u>