SYLLABUS OF A MODULE

Polish name of a module	Termodynamika obiegów cieplnych	
English name of a module	Thermodynamic Cycles	
ISCED classification - Code	0715	
ISCED classification - Field of study	Mechanics and metal trades	
Languages of instruction	English	
Level of qualification:	2 – MSc (EQF 7)	
Number of ECTS credit points	5	
Examination:	EW – exam written	

Number of hours per semester:

Lecture	Exercises	Laboratory	Seminar	E-learning	Project
45	45	0	0	0	0

MODULE DESCRIPTION

MODULE OBJECTIVES

- O1. Students know theory of thermodynamic cycles fundamentals.
- O2. Students acquire skills in thermodynamic cycle calculations.

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Fundamentals of mathematics and thermodynamics.
- 2. Fundamentals of thermal machinery principles.
- 3. Capability of using source literature.
- 4. Data analysis and presentation of results.

LEARNING OUTCOMES

- LO 1 The student possesses knowledge on thermodynamic cycles
- LO 2 The student possesses knowledge on fundamentals of thermal machinery
- LO 3 The student has ability to calculate various thermodynamic cycles.

MODULE CONTENT

Type of classes – lecture		
Lec 1 – Introduction to thermodynamic cycles Review of thermodynamics	3	
Let $1 = \text{Introduction to thermodynamic cycles. Review of thermodynamics.}$		
Thermodynamic parameters. Carnot cycle		
Lec 3 – Fundamentals of internal combustion engines Real and theoretical		
thermodynamic process		
Lec 4 – Otto cycle, Diesel cycle, Sabathe-Seilinger cycle,	3	
Lec 5 – Overexpanded cycle. Design and practical implementations.	3	
Lec 6 - Fundamentals on modelling engine thermodynamic cycle with combustion		
process.	3	
Lec 7 - Thermal machinery with external heat source. Stirling engine. Pros and cons.	3	
Lec 8 – Gas turbines. Brayton cycle.	3	
Lec 9 – Introduction to steam engines and steam turbines. Power systems applications.	3	
Lec 10 - Fundamentals of Clausius-Rankine cycle. H-S and T-S diagrams.	3	
Lec 11 - Secondary reheating and regenerative heating in the steam power plant.	3	
Lec 12 – Waste heat recovery systems. Applications in use.	3	
Lec 13 – Other machinery for heat and power generation. Renewable energy. Geothermal	2	
and solar systems. Nuclear power plants.	3	
Lec 14 – Heat pumps. Refrigerators.	3	
Lec 15 – Summarizing and conclusion on heat and power generation.	3	
Sum		
Type of classes Tyterials		
Type of classes – Tutorials.	of hours	
Tut 1-2 – Introduction to several computational tools for thermodynamic calculations.	6	
Tut 3 – Calculations and Carnot cycle analysis.		
Tut 4 – Calculations and analysis of Otto cycle.	3	
Tut 5 - Calculations and analysis of Diesel cycle.		
Tut 6 – Calculations and analysis of Sabathe-Seilinger cycle.	3	
Tut 7 - Calculations and analysis of overexpanded cycle.		
Tut 8-9 – Modeling IC engine thermodynamic cycle based on the 0-D model for heat		
release.		
Tut 9 - Calculations and analysis of the Stirling engine.		
Tut 10-11 - Modelling Clausius-Rankine cycle and its analysis.		
Tut 12-13 – Applying regenerative heating and secondary reheating to Clausius-Rankine		
cycle. Calculus and analysis of the cycle.		
Tut 14 – Analysis of waste heat recovery systems applications to thermal machinery.		
Tut 15 – Calculations of the heat pump thermodynamic cycle.	3	
Sum	45	

TEACHING TOOLS

1. – Lecture with the use of multimedia presentations
2. – Tutorials of thermodynamic cycles calculation
3. – Instructions to classes
4. – Own codes and commercial software

WAYS OF ASSESSMENT (F-FORMATIVE, S-SUMMATIVE)

F1. - assessment of the ability to apply the acquired knowledge while doing the exercises

F2. - evaluation of reports on the implementation of exercises covered by the curriculum

F3. - assessment of activity during classes

S1. - assessment of the ability to solve the problems posed and the manner of presentation obtained results - pass mark *

S2. - assessment of mastery of the teaching material being the subject of the lecture - exam

*) in order to receive a credit for the module, the student is obliged to attain a passing grade in all classes as well as in achievement tests.

STUDENT'S WORKLOAD

L.p.	Forms of activity	Average number of hours required for realization of activity		
1. Contact hours with teacher				
1.1	Lectures	45		
1.2	Tutorials	45		
1.3	Laboratory	0		
1.4	Seminar	0		
1.5	Project	0		
1.6	Consulting teacher during their duty hours	5		
1.7	Examination	3		
	Total number of contact hours with teacher:	98		
2. Student's individual work				
2.1	Preparation for tutorials and tests	10		
2.2	Preparation for laboratory exercises, writing reports on laboratories	0		
2.3	Preparation of project	0		
2.4	Preparation for final lecture assessment	0		
2.5	Preparation for examination	10		
2.6	Individual study of literature	7		
	Total number of hours of student's individual work:	27		
	Overall student's workload:	125		
Overall number of ECTS credits for the module		5 ECTS		
Number of ECTS points that student receives in classes requiring teacher's supervision:		3.92 ECTS		
Number of ECTS credits acquired during practical classes including laboratory exercises and projects:		1.8 ECTS		

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

- 1. Cengel Y, Boles M, Thermodynamics: An Engineering Approach, McGraw-Hill Education; 8 edition, 2014
- 2. Moran JN, Shapiro HN, Principles of Engineering Thermodynamics, John Wiley & Sons Inc, 2015
- 3. Mayhew Y, Rogers GFC, Mayhew YR, Engineering Thermodynamics : Work and Heat Transfer, Longman, Pearson Education Limited, 1996

MODULE COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

Stanislaw Szwaja, Associate Professor, CzUT, Department of Thermal Machinery, szwaja@imc.pcz.pl