SYLLABUS OF A MODULE

Polish name of a module	Programowanie systemów wbudowanych	
English name of a module	Embedded systems programming	
ISCED classification - Code	0613	
ISCED classification - Field of study	Software and applications development and analysis	
Languages of instruction	English	
Level of qualification:	1 – BSc (EQF 6)	
Number of ECTS credit points	6	
Examination:	EW – exam written	

Number of hours per semester:

Lecture	Tutorial	Laboratory	Seminar	Project	Others
30EW	0	30	0	0	0

MODULE DESCRIPTION

MODULE OBJECTIVES

- O1. Understanding advanced programming methods and properties of embedded systems.
- O2. Acquiring practical skills in using selected integrated development environments as well as designing and debugging embedded systems software.

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Knowledge of mathematics, digital techniques and basic programming.
- 2. Ability to use different sources of information and technical documentation.
- 3. Ability to work independently and in a group.
- 4. Ability to correctly interpret and present their own activities.

LEARNING OUTCOMES

- LO 1 The student has theoretical knowledge in the field of architecture and basic properties of embedded systems and methods of their programming.
- LO 2 The student has the ability to use selected integrated programming environments and to design and implement embedded systems software.

MODULE CONTENT

		Number
Type of cla	sses – Lectures	of
		hours
Lec 1 -	Basic definitions, architecture and components of microprocessor system:	2
	CPU, memory, GPIO, ADC. Real-time systems. Interrupts and software	
	design models for embedded systems. Coding rules and conventions. CMSIS.	
Lec 2 -	Computer arithmetic. Basic binary and logical operations in ANSI C.	2
	Programming of basic operations in C language.	
Lec 3 -	Selected issues in the field of programming embedded systems in the C	2
	language: memory organization, pointers, data structures, bit fields and	
	unions, modules, attribute modifiers, selected preprocessor and linker	
	directives.	
Lec 4 -	GPIO port controllers. Basic properties and programming methods.	2
Lec 5 -	Analog-to-digital and digital-to-analog converters.	2
Lec 6 -	Pulse width modulation technique and hardware timers. Analysis of sample	2
17	programs.	2
Lec 7 -	Real-time operating systems.	2
Lec 8-9 -	Serial communication interfaces: UART, I2C, SPI, 1-wire. Basic properties,	4
1001011	application area and software design methods.	4
Lec 10-11 ·	colutions	4
Lec 12 -	Eived and floating-point numbers	2
	Embedded systems and programmable logic	2
Lec 14-15-	Doxygen and MISRA standards. Summary of material	<u> </u>
	boxygen and month standards. Summary of material.	Number
Type of de	scas_laboratorios	of
Type of cla	sses- Laboratories	UI havva
		nours
Lab 1 -	Integrated development environment for microcontrollers. Running,	2
	analyzing and modifying of example programs.	
Lab 2 -	Configuration of basic peripheral devices and control them with the CMSIS	2
	interface.	
Lab 3 -	Basic arithmetic, binary and logical operations in C language. Measurement	2
	of the time needed for the microcontroller to perform selected arithmetic	
	operations.	
Lab 4-5 -	Interrupts, timers and PWM signal generation.	4
Lab 6-7 -	Design of multithreaded application based on RTOS	4
Lah 8-12 -	Project implementation	10
Lab 12 15	Project implementation.	5
Lan 12-12 -	Project presentation. Discussion of implementation options.	Ø

TEACHING TOOLS

1. – Lectures using multimedia presentations, blackboard and chalk or whiteboards and pens.
2. – Computers with software, laboratory equipment and laboratory guides.
3. – Sample programs demonstrating the correct programming methods.

WAYS OF ASSESSMENT (F – FORMATIVE, S – SUMMATIVE)

F1. – Assessment of activity during classes.

S1. – Assessment of the ability to solve the problems posed and the manner of presentation obtained results - the final project for the evaluation of the laboratory. *.

S2. – Assessment of mastery of the teaching material being the subject of the lecture - exam.

*) The condition for obtaining credit is to receive positive grades from all laboratory exercises and to carry out the verification task.

STUDENT'S WORKLOAD

L.p.	Forms of activity	Average number of hours required for realization of activity
1	Contact hours with teacher	
1.1	Lectures	30
1.2	Tutorials	0
1.3	Laboratory	30
1.4	Seminar	0
1.5	Project	0
1.6	Consulting teacher during their duty hours	5
1.7	Examination	3
	Total number of contact hours with teacher:	68
2. Student's individual work		
2.1	Preparation for tutorials and tests	0
2.2	Preparation for laboratory exercises, writing reports on laboratories	22
2.3	Preparation of project	0
2.4	Preparation for final lecture assessment	0
2.5	Preparation for examination	20
2.6	Individual study of literature	40
	Total number of hours of student's individual work:	82
	Overall student's workload:	150
Overa	Il number of ECTS credits for the module	6
Number of ECTS points that student receives in classes requiring teacher's supervision: 2,72		2,72
Number of ECTS credits acquired during practical classes including laboratory exercises and projects :2,08		

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

	BASIC
1.	Colin Walls: "Embedded Software: The Works", Elsevier, Boston, 2006.
2.	Geoffrey Brown, Discovering the STM32 Microcontroller, 2016 (free e-book).
3.	Donald Norris, Programming with STM32. Getting Started with Nucleo Board and C/C++, Mc Graw Hill Education,
	2018.
4.	Trevor Martin, The Designer's Guide to the Cortex-M Processor Family. A Tutorial Approach, Elsevier, 2013.
5.	Herbert Schildt, C: The Complete Reference, Fourth Edition, McGraw-Hill, 2000.
	SUPPLEMENTARY
6.	Wayne Wolf: "Computers as Components: Principles of Embedded Computing System Design" Morgan & Kaufman
	2000.
7.	Marwedel P.: "Embedded System Design" Kluwer Academic Publishers, Boston 2003.

MODULE COORDINATOR (NAME, SURNAME, INSTITUTE, E-MAIL ADDRESS)

dr hab. eng. Andrzej Przybył, Associate Professor, Institute of Computational Intelligence, andrzej.przybyl@pcz.pl