

CZESTOCHOWA UNIVERSITY OF TECHNOLOGY FACULTY OF CIVIL ENGINEERING

Studies:

Civil Engineering using BIM Technology Subject description card

Name of the subject				Subje	Subject code		Year / semester	
Strength of Materials in Civil Engineering Wytrzymałość materiałów w budownictwie					II	01		
Su	bject	Profile		L	Level of education			
Obligatory		General	academic	Full-time, first degree – S1		S1		
	Type of classes							
Lecture	Exercises	Laboratory	Project	Seminar	Exam	EC	TS	
15	30	-	15	-	-		6	
Department conducting subject:	Department of Civil Engineering Tel: +48 (34) 325 09 50 mail: damian.jonczyk@pcz.pl				cz.pl			
Teachers conducting subject:	PhD. Eng. Krzysztof Kuliński MSc. Eng. Damian Jończyk							

I. Ca	ard subject
PURP	OSE OF THE SUBJECT
C01	A basic understanding of the behavior of common structural forms, based on a physical understanding of how these forms are able to carry external forces through the development of internal forces in structural elements.
C02	The ability to derive stress and strain distributions within basic structural members.
PREL	IMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES
1	Knowledge in the field of Classical Mechanics
2	Knowledge in the field of Engineering Mathematics (Linear Algebra and Differential Equations)
EDUC	ATIONAL EFFECTS:
Know	edge: the graduate knows and understands
EK1	conceptual links between structural and solid mechanics, concepts of designing for strength and deformation limits, how beams and frames resist external forces.
Skills:	the graduate can
EK2	determine: the internal forces in statically determinate beams and frames, the stresses within simple elements and cross-sections, deflections in simple beams.
Socia	competence: the student is ready to
EK3	work individually and in team.

Type of classes - Lecture		Number of hours	
L1	Introduction. Review of Equilibrium		1
L2	Stress and Strain. Mechanical Properties of Materials		1
L3	Axial Load	*	1
L4	Torsion		1
L5	Constraints and Statical Determinacy		1
L6	Shear Force and Bending Moment Diagrams		1
L7	Moments of Inertia		1
L8	Bending		1

L9	Transverse Shear	1
L10	Deflection of Beams – Elastic Curve	1
L11	Deflection of Beams - Energy Methods	1
L12	Unsymmetric Bending. Combined Loadings	1
L13	Cross-section Core	1
L14	Buckling of Columns	1
L15	Quiz	1
	TOTAL:	15

Type of classes - Exercise		Number of hours	
E1	Introduction. Review of Forces, Moments	2	
E2	Axial Loading – Statically Determinate Bars	2	
E3	Axial Loading – Statically Indeterminate Problems	2	
E4	Torsion	2	
E5 E6	Shear Force and Bending Moment Diagrams in Beams	4	
E7	Shear Force and Bending Moment Diagrams in Frames	2	
E8	Quiz no. 1	2	
E9	Normal and Shear Stresses in Beam	2	
E10 E11	Deflection of Beams	4	
E12	Unsymmetric Bending. Combined Loadings	2	
E13	Cross-section Core	2	
E14	Column Buckling	2	
E15	Quiz no. 2	2	
	TOTAL:	30	

Type of classes - Project		Number o hours	
P1	Introduction. General Information about Project	1	
P2 P3	Review of Statics	2	
P4	Project. Individual Assumptions	1	
P5 P6	Project. Shear Force and Bending Moment Diagrams		
P7			
P8 P9	Project. Normal and Shear Stresses	2	
P10 P11	Project. Deflection	3	
P12 P13	Project. Cross-section Core	1	
P14	Introduction to Structural Design	1	
P15	Review	1	
	TOTAL:	15	

BASIC	AND ADDITIONAL LITERATURE			
Basic literature:				
1.	Hibler R. C., Mechanics of Materials, Pearson, 2017.			
2.	Goodno B. J., Gere J. M., Mechanics of Materials, Cengage Learning, 2018.			
Additi	onal literature:			
1.	Timoshenko S., Strength of Materials, Part I – Elementary Theory and Problems, D. Van Nostrand Company, 1940.			
2.	Gross D., Hauger W., Schröder J., Wall W. A., Bonet J., Engineering Mechanics 2 - Mechanics of Materials, Springer, 2017.			
3.	Ghavami P., Mechanics of Materials - An Introduction to Engineering Technology, Springer, 2015.			
4.	Dias da Silva V., Mechanics and Strength of Materials, Springer, 2006.			
5.	Roylance D., Modules in Mechanics of Materials, http://web.mit.edu/course/3/3.11/www/module-list.html .			
6.	Bucciarelli L., Engineering Mechanics for Structures https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-050-solid-mechanics-fall-2004/readings/ >.			

Czestochowa University of Technology Erasmus+ Deat. Coordinator (FCS) Eng. Krzysztof KULINSKI, Ph.D C4, O3, 2027, v

Donnen Jouany