SYLLABUS OF A MODULE

Polish name of a module	Termodynamika	
English name of a module	Thermodynamics	
ISCED classification - Code	0715	
ISCED classification - Field of study	Mechanics and metal trades	
Languages of instruction	English	
Level of qualification:	1 — BSc (EQF 6)	
Number of ECTS credit points	6	
Examination:	EW – exam written	
Available in semester:	A – autumn only	

Number of hours per semester:

Lecture	Tutorials	Laboratory	Seminar	E-learning	Project
30 E	15	15	0	0	0

MODULE DESCRIPTION

MODULE OBJECTIVES

- O1. Understanding the fundamental energy conversion processes.
- O2. Understanding and ability to use of the first and second law of thermodynamics.
- O3.Understanding the pure substance properties and their mixtures.
- O4.Understanding the thermodynamic cycles and cycles efficiency.

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Knowledge on the mathematical analysis
- 2. Capability to use various information sources, including technical manuals.
- 3. Capability of individual work.
- 4. Data analysis and presentation of results

LEARNING OUTCOMES

- LO 1 Knowledge on fundamental energy conversion processes and thermodynamics laws
- LO 2 Knowledge on thermodynamic cycles and their efficiencies
- LO 3 Capability of thermodynamic cycles efficiency calculations

MODULE CONTENT

	Number	
Type of classes – Lecture		
	hours	
Lec 1-2 - Basic concepts: nature of thermodynamics, system and control volumes, continuum		
concept, state and equilibrium, processes and cycles, temperature and zero th law of	2	
thermodynamics		
Lec 3-6 - Energy, energy transfer, general energy analysis: internal energy, heat transfer, work,		
first law of thermodynamics, energy conversion efficiency	4	
Lec 7-8 - Properties of pure substances: concept of a pure substance, phase-change processes,	2	
ideal gas, ideal gas equation of state, application of other state equations	2	
Lec 9-10 - Energy analysis of closed systems	2	
Lec 11-12 - Mass and energy analysis of control volume	2	
Lec 13-14 - Second law of Thermodynamics	2	
Lec 13-16 - Entropy and Exergy analysis	4	
Lec 17-18 - Maxwell relations, Gibbs and Helmholtz functions	2	
Lec 19-22 - Gas Power cycles	4	
Lec 23-26 - Gas mixtures, gas and vapour mixtures, Rankine cycle	4	
Lec 27-30 - Thermodynamics of chemical reactions: phase and chemical equilibrium	4	
Sum	30	
	Number	
Type of classes- Tutorials	of	
	hours	
Tut 1 - Basic concents	1	
Tut 2.3 - Energy energy transfer general energy analysis: internal energy heat transfer work	-	
first law of thermodynamics, energy conversion efficiency	2	
Tut 4-5 - Properties of pure substances; concept of a pure substance, phase-change processes.		
ideal gas, ideal gas equation of state, application of other state equations	2	
Tut 6 -7 - Energy analysis of closed systems and Mass and energy analysis of control volume	2	
Tut 8-9 - Second law of Thermodynamics. Entropy and exergy analysis	2	
Tut 10-11 - Gas Power cycles		
Tut 12-13 - Gas mixtures gas and vanour mixtures		
Tut 14-15 - Thermodynamics of chemical reactions	2	
Sum	15	
5011	Number	
Tuno of classoc - Laboratory	of	
Type of classes- Laboratory	UI hauna	
	nours	
Lab 1-2 Measurement precision	2	
Lab 3-4 – Temperature measurements	2	
Lab 5-6 – Pressure measurements	2	
Lab 7-8 – Mass flow rate measurements	2	
Lab 9-10 – Specific heat capacity	2	
Lab 11-12 – Humidity measurements	2	
Lab 13-14 – Experimental determination of overall heat transfer coefficient	2	
Lab 15 – Density measurements	1	
Sum	15	

TEACHING TOOLS

- Lecture notes	
2 – Literature	
3 - Thermodynamics laboratory	

WAYS OF ASSESSMENT (F-FORMATIVE, S-SUMMATIVE

F1. - assessment of preparation for laboratory exercises

F2. - assessment of the ability to apply the acquired knowledge while doing the exercises

F3. - evaluation of reports on the implementation of exercises covered by the curriculum

F4. - assessment of activity during classes

S1. - assessment of the ability to solve the problems posed and the manner of presentation obtained results - pass mark *

S2. - assessment of mastery of the teaching material being the subject of the lecture - exam

*) in order to receive a credit for the module, the student is obliged to attain a passing grade in all laboratory classes as well as in achievement tests.

STUDENT'S WORKLOAD

L.p.	Forms of activity	Average number of hours required for realization of activity			
1. Contact hours with teacher					
1.1	Lectures	30			
1.2	Tutorials	15			
1.3	Laboratory	15			
1.4	Seminar	0			
1.5	Project	0			
1.6	Examination	3			
	Total number of contact hours with teacher:	68			
2	. Student's individual work				
2.1	Preparation for tutorials and tests	25			
2.2	Preparation for laboratory exercises, writing reports on laboratories	25			
2.3	Preparation of project	0			
2.4	Preparation for final lecture assessment	0			
2.5	Preparation for examination	22			
2.6	Individual study of literature	10			
Total number of hours of student's individual work:		82			
	Overall student's workload:	150			
Overall number of ECTS credits for the module		6 ECTS			
Number of ECTS points that student receives in classes requiring teacher's supervision:		2.52 ECTS			
Number of ECTS credits acquired during practical classes including laboratory exercises and projects:		2.32 ECTS			

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

- 1. Shavit A., Gutfinger C., Thermodynamics: From Concepts to Applications, CRC Press, 2008
- 2. Engel T., Reid P., Thermodynamics, Statistical Thermodynamics, & Kinetics, Benjamin Cummings, 2006
- 3. Janna W.S., Engineering Heat Transfer, Third Edition, CRC Press, 2009
- 4. Cengel, Y.A., Boles M.A., Thermodynamics, an engineering approach, 5th ed., New York, McGraw-Hill, 2006
- 5. Moran M.J., Shapiro H.D.: Fundamentals of engineering thermodynamics, John Wiley & Sons, 2000
- 6. R.E. Sonntag, C. Borgnakke, G.J. Van Wylen, Fundamentals of Thermodynamics, 6th Edition, John Wiley & Sons, 2003
- 7. Shavit A., Gutfinger C., Thermodynamics: From Concepts to Applications, CRC Press, 2008
- 8. Engel T., Reid P., Thermodynamics, Statistical Thermodynamics, & Kinetics, Benjamin Cummings, 2006

MODULE COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

prof. dr hab. inż. Andrzej Bogusławski, Katedra Maszyn Cieplnych, abogus@imc.pcz. pl