SYLLABUS OF A MODULE

Polish name of a module	Wytrzymałość Materiałów	
English name of a module	Strength of materials	
ISCED classification - Code	0715	
ISCED classification - Field of study	Mechanics and metal trades	
Languages of instruction	English	
Level of qualification:	1 – BSc (EQF 6)	
Number of ECTS credit points	6	
Examination:	A - assignment	
Available in semester:	A – autumn only	

Number of hours per semester:

Lecture	Tutorials	Laboratory	Seminar	E-learning	Project
15	15	30	0	0	0

MODULE DESCRIPTION

MODULE OBJECTIVES

- O1. Knowledge of basics of strength of materials in terms of classical approach.
- O2. Practical skills in the analysis of the behavior of the body subjected to external forces and performing simple strength calculations.
- O3. Practical skills in determining the mechanical properties of materials.

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Knowledge of mathematic and static in mechanics.
- 2. Knowledge of safety rules when using laboratory equipment.
- 3. Ability to perform mathematical activities to solve the assigned tasks.
- 4. Ability to use of different sources of information and technical drawings.
- 5. Ability to work independently and in a group.
- 6. Ability to interpretation and presentation of obtained results.

LEARNING OUTCOMES

- LO1 Theoretical knowledge in terms of simple strength of materials.
- LO2 General knowledge about stress and strain tensor, constitutive relations, plane stress and strain states.
- LO3 Ability to define internal forces in beams and geometrical properties of the cross section of beams.

- LO4 Calculate stress, strain and displacement in bars and beams for usually used cross sections in engineering practice. Use strength hypotheses to determine cross section geometry.
- LO5 Knows the operating principles of selected laboratory equipment in strength of materials laboratory.
- LO6 Determine the measurement method and perform measurements of mechanical properties of materials.
- LO7 Prepare a test report from the laboratory.

MODULE CONTENT

Type of classes – lecture		
		Lec 1-2 – Internal forces, internal forces diagrams.
Lec 3-4 – Moment of inertia of a plane area, polar moment of inertia, product of inertia,		
Steiner theorem.		
Lec 5 – Principal central moments of inertia, central principal axes.		
Lec 6 – Tension and compression, normal stress and strain, stress-strain diagrams, Hooke's		
Law, Young's modulus.		
Lec 7 – Stress and strain tensor, constitutive relations.		
Lec 8 – Shear stress and strain, pure shear, shear modulus – modulus of rigidity, shear		
stress in beams.		
Lec 9 – Torsion of round shafts, stress in torsion, relation between Young's and shear	1	
modulus, section modulus.		
Lec 10-11 – Stress in pure bending, curvature of beams, combined stress – bending and	2	
tension or compression, normal stress diagrams, axial section modulus, eccentric		
compression or tension.		
Lec 12-13 – Strength hypotheses, maximum shear stress theory, strain energy of distortion	2	
theory.		
Lec 14 – Compound stresses, permissible stress.		
Lec 15 – Deformation of beams.	1	
Sum	15	
	10	
Type of classes— tutorials	Number	
Type of classes- tutorials	Number of hours	
Type of classes– tutorials Exe 1,2 – Internal forces, internal forces diagrams.	Number of hours 2	
Type of classes– tutorials Exe 1,2 – Internal forces, internal forces diagrams. Exe 3-5 – Moment of inertia of a plane area, polar moment of inertia, product of inertia,	Number of hours 2 3	
Type of classes- tutorialsExe 1,2 - Internal forces, internal forces diagrams.Exe 3-5 - Moment of inertia of a plane area, polar moment of inertia, product of inertia, Steiner theorem. Principal central moments of inertia, central principal axes.	Number of hours 2 3	
Type of classes- tutorialsExe 1,2 - Internal forces, internal forces diagrams.Exe 3-5 - Moment of inertia of a plane area, polar moment of inertia, product of inertia, Steiner theorem. Principal central moments of inertia, central principal axes.Exe 6-8 - Stress in pure bending, combined stress - bending and tension or compression,	Number of hours 2 3 3	
Type of classes- tutorialsExe 1,2 - Internal forces, internal forces diagrams.Exe 3-5 - Moment of inertia of a plane area, polar moment of inertia, product of inertia, Steiner theorem. Principal central moments of inertia, central principal axes.Exe 6-8 - Stress in pure bending, combined stress - bending and tension or compression, normal stress diagrams, eccentric compression or tension.	Number of hours 2 3 3	
Type of classes- tutorialsExe 1,2 - Internal forces, internal forces diagrams.Exe 3-5 - Moment of inertia of a plane area, polar moment of inertia, product of inertia, Steiner theorem. Principal central moments of inertia, central principal axes.Exe 6-8 - Stress in pure bending, combined stress - bending and tension or compression, normal stress diagrams, eccentric compression or tension.Exe 9,10 - Shear stress, Żurawski formula.	Number of hours 2 3 3 2 2	
Type of classes- tutorialsExe 1,2 - Internal forces, internal forces diagrams.Exe 3-5 - Moment of inertia of a plane area, polar moment of inertia, product of inertia, Steiner theorem. Principal central moments of inertia, central principal axes.Exe 6-8 - Stress in pure bending, combined stress - bending and tension or compression, normal stress diagrams, eccentric compression or tension.Exe 9,10 - Shear stress, Żurawski formula.Exe 11 - Torsion of round shafts. Torsional moments, shear stress due to torsion.	Number of hours 2 3 3 2 2 1	
Type of classes- tutorialsExe 1,2 - Internal forces, internal forces diagrams.Exe 3-5 - Moment of inertia of a plane area, polar moment of inertia, product of inertia, Steiner theorem. Principal central moments of inertia, central principal axes.Exe 6-8 - Stress in pure bending, combined stress - bending and tension or compression, normal stress diagrams, eccentric compression or tension.Exe 9,10 - Shear stress, Żurawski formula.Exe 11 - Torsion of round shafts. Torsional moments, shear stress due to torsion.Exe 12-13 - Compound stress, bending and torsion of round shafts, bending and shear in	Number of hours 2 3 3 2 2 1 2 1 2	
Type of classes- tutorialsExe 1,2 - Internal forces, internal forces diagrams.Exe 3-5 - Moment of inertia of a plane area, polar moment of inertia, product of inertia, Steiner theorem. Principal central moments of inertia, central principal axes.Exe 6-8 - Stress in pure bending, combined stress - bending and tension or compression, normal stress diagrams, eccentric compression or tension.Exe 9,10 - Shear stress, Żurawski formula.Exe 11 - Torsion of round shafts. Torsional moments, shear stress due to torsion.Exe 12-13 - Compound stress, bending and torsion of round shafts, bending and shear in beams.	Number of hours 2 3 3 2 1 2 1 2	
Type of classes- tutorialsExe 1,2 - Internal forces, internal forces diagrams.Exe 3-5 - Moment of inertia of a plane area, polar moment of inertia, product of inertia, Steiner theorem. Principal central moments of inertia, central principal axes.Exe 6-8 - Stress in pure bending, combined stress - bending and tension or compression, normal stress diagrams, eccentric compression or tension.Exe 9,10 - Shear stress, Żurawski formula.Exe 11 - Torsion of round shafts. Torsional moments, shear stress due to torsion.Exe 12-13 - Compound stress, bending and torsion of round shafts, bending and shear in beams.Exe 14 - Design criteria.	Number of hours 2 3 3 2 1 2 1 2 1 2 1	
Type of classes- tutorialsExe 1,2 - Internal forces, internal forces diagrams.Exe 3-5 - Moment of inertia of a plane area, polar moment of inertia, product of inertia, Steiner theorem. Principal central moments of inertia, central principal axes.Exe 6-8 - Stress in pure bending, combined stress - bending and tension or compression, normal stress diagrams, eccentric compression or tension.Exe 9,10 - Shear stress, Żurawski formula.Exe 11 - Torsion of round shafts. Torsional moments, shear stress due to torsion.Exe 12-13 - Compound stress, bending and torsion of round shafts, bending and shear in beams.Exe 14 - Design criteria.Exe 15 - Deformation of beams due to bending, Clebsch method.	Number of hours 2 3 3 2 1 2 1 2 1 2 1 1 1	
Type of classes- tutorialsExe 1,2 - Internal forces, internal forces diagrams.Exe 3-5 - Moment of inertia of a plane area, polar moment of inertia, product of inertia, Steiner theorem. Principal central moments of inertia, central principal axes.Exe 6-8 - Stress in pure bending, combined stress - bending and tension or compression, normal stress diagrams, eccentric compression or tension.Exe 9,10 - Shear stress, Żurawski formula.Exe 11 - Torsion of round shafts. Torsional moments, shear stress due to torsion.Exe 12-13 - Compound stress, bending and torsion of round shafts, bending and shear in beams.Exe 14 - Design criteria.Exe 15 - Deformation of beams due to bending, Clebsch method.	Number of hours 2 3 2 1 2 1 1 1 15	
Type of classes – tutorialsExe 1,2 – Internal forces, internal forces diagrams.Exe 3-5 – Moment of inertia of a plane area, polar moment of inertia, product of inertia, Steiner theorem. Principal central moments of inertia, central principal axes.Exe 6-8 – Stress in pure bending, combined stress – bending and tension or compression, normal stress diagrams, eccentric compression or tension.Exe 9,10 – Shear stress, Żurawski formula.Exe 11 – Torsion of round shafts. Torsional moments, shear stress due to torsion.Exe 12-13 – Compound stress, bending and torsion of round shafts, bending and shear in beams.Exe 14 – Design criteria.Exe 15 – Deformation of beams due to bending, Clebsch method.Sum	Number of hours 2 3 2 1 2 1 1 15 Number	
Type of classes- tutorialsExe 1,2 - Internal forces, internal forces diagrams.Exe 3-5 - Moment of inertia of a plane area, polar moment of inertia, product of inertia, Steiner theorem. Principal central moments of inertia, central principal axes.Exe 6-8 - Stress in pure bending, combined stress - bending and tension or compression, normal stress diagrams, eccentric compression or tension.Exe 9,10 - Shear stress, Żurawski formula.Exe 11 - Torsion of round shafts. Torsional moments, shear stress due to torsion.Exe 12-13 - Compound stress, bending and torsion of round shafts, bending and shear in beams.Exe 14 - Design criteria.Exe 15 - Deformation of beams due to bending, Clebsch method.Type of classes- laboratory	Number of hours 2 3 3 2 1 2 1 2 1 1 2 1 1 5 Number of hours	
Type of classes- tutorialsExe 1,2 - Internal forces, internal forces diagrams.Exe 3-5 - Moment of inertia of a plane area, polar moment of inertia, product of inertia, Steiner theorem. Principal central moments of inertia, central principal axes.Exe 6-8 - Stress in pure bending, combined stress - bending and tension or compression, normal stress diagrams, eccentric compression or tension.Exe 9,10 - Shear stress, Żurawski formula.Exe 11 - Torsion of round shafts. Torsional moments, shear stress due to torsion.Exe 12-13 - Compound stress, bending and torsion of round shafts, bending and shear in beams.Exe 14 - Design criteria.Exe 15 - Deformation of beams due to bending, Clebsch method.Type of classes- laboratoryLab 1-3 - Brinell and Poldi hardness tests.	Number of hours 2 3 3 2 1 2 1 2 1 2 1 1 2 1 5 Number of hours 3	
Type of classes- tutorialsExe 1,2 - Internal forces, internal forces diagrams.Exe 3-5 - Moment of inertia of a plane area, polar moment of inertia, product of inertia, Steiner theorem. Principal central moments of inertia, central principal axes.Exe 6-8 - Stress in pure bending, combined stress - bending and tension or compression, normal stress diagrams, eccentric compression or tension.Exe 9,10 - Shear stress, Żurawski formula.Exe 11 - Torsion of round shafts. Torsional moments, shear stress due to torsion.Exe 12-13 - Compound stress, bending and torsion of round shafts, bending and shear in beams.Exe 14 - Design criteria.Exe 15 - Deformation of beams due to bending, Clebsch method.SumType of classes- laboratoryLab 1-3 - Brinell and Poldi hardness tests.	Number of hours 2 3 3 2 1 2 1 1 15 Number of hours 3 3	
Type of classes- tutorialsExe 1,2 - Internal forces, internal forces diagrams.Exe 3-5 - Moment of inertia of a plane area, polar moment of inertia, product of inertia, Steiner theorem. Principal central moments of inertia, central principal axes.Exe 6-8 - Stress in pure bending, combined stress - bending and tension or compression, normal stress diagrams, eccentric compression or tension.Exe 9,10 - Shear stress, Żurawski formula.Exe 11 - Torsion of round shafts. Torsional moments, shear stress due to torsion.Exe 12-13 - Compound stress, bending and torsion of round shafts, bending and shear in beams.Exe 15 - Deformation of beams due to bending, Clebsch method.Type of classes- laboratoryLab 1-3 - Brinell and Poldi hardness tests.Lab 7-8 - Measurement of impact strength of metals.	Number of hours 2 3 2 1 2 1 1 15 Number of hours 3 3	

Lab 12-14 – Compression test using Zwick/Roell materials testing machine.	
Lab 15-16 – Measurement of stress with bond wire strain gauges.	
Lab 17-18 – Measurement of deflection in straight beams	
Lab 19-20 – Bending test using Zwick/Roell materials testing machine.	
Lab 21-30 – Computer modelling of deformation and stress in beams using Abaqus/FEA.	
Sum	30

TEACHING TOOLS

1 - lecture with the use of multimedia presentations and computer equipped with the proper software including Abaqus/FEA.

2 – laboratories equipped with measuring apparatus and computer software

3 – Instructions for laboratory classes and templates of test reports

WAYS OF ASSESSMENT (F-FORMATIVE, S-SUMMATIVE

F1. - assessment of preparation for laboratory exercises

F2. - assessment of the ability to apply the acquired knowledge while doing the exercises

F3. - evaluation of reports on the implementation of exercises covered by the curriculum

F4. - assessment of activity during classes

S1. - assessment of the ability to solve the problems posed and the manner of presentation obtained results - pass mark *

S2. - assessment of mastery of the teaching material being the subject of the lecture - exam

*) in order to receive a credit for the module, the student is obliged to attain a passing grade in all laboratory classes as well as in achievement tests.

STUDENT'S WORKLOAD

L.p.	Forms of activity	Average number of hours required for realization of activity			
1	1. Contact hours with teacher				
1.1	Lectures	15			
1.2	Tutorials	15			
1.3	Laboratory	30			
1.4	Seminar	0			
1.5	Project	0			
1.6	Examination	0			
Total number of contact hours with teacher:		60			
2. Student's individual work					
2.1	Preparation for tutorials and tests	20			
2.2	Preparation for laboratory exercises, writing reports on laboratories	30			
2.3	Preparation of project	0			
2.4	Preparation for final lecture assessment	20			
2.5	Preparation for examination	0			
2.6	Individual study of literature	20			

Total number of hours of student's individual work:	90
Overall student's workload:	150
Overall number of ECTS credits for the module	6 ECTS
Number of ECTS points that student receives in classes requiring teacher's supervision:	2,40 ECTS
Number of ECTS credits acquired during practical classes including laboratory exercises and projects:	3,20 ECTS

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

- 1. Blake A.: Handbook of Mechanics, Materials, and Structures, 1985
- 2. Silva V. D.: Mechanics and Strength of Materials, 2006
- 3. Ross Carl T.F., Case J., Chilver A., Strength of materials and Structures, Elsevier, 1999
- 4. Patnaik S., Hopkins D., Strength of Materials, A New Unified Theory for the 21 Century, Elsevier, 2004
- 5. Timoshenko S.: Strength of materials, part I, part II, Van Nostrand Company, Inc. 1956

6. Z.Dyląg, A.Jakubowicz, Z.Orłoś: Wytrzymałość materiałów. Tom 1, WNT, W-wa 2003

7. Z.Dyląg, A.Jakubowicz, Z.Orłoś: Wytrzymałość materiałów. Tom 2, WNT, W-wa 2003

- 8. M.E.Niezgodziński, T.Niezgodziński, Zadania z wytrzymałości materiałów, WNT, Warszawa, 1997
- 9. M.Banasiak, K.Grossman, M.Trombski, Zbiór zadań z wytrzymałości materiałów, PWN, 1998

MODULE COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

Assoc. Prof. Marcin Kubiak, Department of Mechanics and Fundamentals of Machinery Design,

kubiak@imipkm.pcz.pl