SYLLABUS OF A MODULE

Polish name of a module	Komputerowe wspomaganie prac inżynierskich Computer Aided Engineering	
English name of a module		
ISCED classification - Code	0715	
ISCED classification - Field of study	Mechanics and metal trades	
Languages of instruction	English	
Level of qualification:	1 – BSc (EQF 6)	
Number of ECTS credit points	4	
Examination:	A - assignment	
Available in semester:	S – Spring only	

Number of hours per semester:

Lecture	Tutorials	Laboratory	Seminar	E-learning	Project
15		30			

MODULE DESCRIPTION

MODULE OBJECTIVES

- O1. Expanding knowledge of 3D modeling.
- O2. To acquire capabilities to conduct strength analyzes using the finite element method in relation to the selected CAE system.

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Fundamentals of mechanics, mechanism and machine theory, strength of materials.
- 2. Ability to read and apply technical drawings.
- 3. Ability to build 3D models in CAD programs.
- 4. Capability of using source literature.
- 5. Capability of individual work and collaboration in a group.
- 6. Data analysis and presentation of results.

LEARNING OUTCOMES

- LO 1 Knowledge on parameterization and optimization of CAD models.
- LO 2 Knowledge on finite element method in relation to the selected CAE system.
- LO 3 Ability to construct the parameterized solid models and to conduct strength analyzes in selected CAE system.

MODULE CONTENT

Type of classes – lecture	Number of hours
Lec 1÷3 - Parameterization of CAD models. Global variables, equations, part configurations, configurations in assemblies.	3
Lec 4,5 - Stress analysis. The analysis process.	2
Lec 6 - Stress analysis. The influence of mesh density of displacement and stress results.	1
Lec 7 - Stress analysis. Methods to present FEA results.	1
Lec 8 - Stress analysis. Modeling and discretization errors.	1
Lec 9 - Stress analysis. Mesh controls.	1
Lec 10 - Stress analysis. Stress concentrations.	1
Lec 11,12- Stress analysis. Structural analyses of simple assemblies.	2
Lec 13 - Stress analysis. Contact conditions.	1
Lec 14,15 - Optimization of models by using a design study.	2
Sum	15
	Number
Type of classes– laboratory	of
	hours
Lab 1 - Use global variable. Create equations.	2
Lab 2 - Use configurations to represent different versions of a part within a single file.	
Suppress and unsuppress features.	6
Lab 3 - Change dimension values by configuration. Suppress features by configuration.	
Lab 4 - Stress analysis. Preprocessing. Meshing. Processing. Post-processing.	
Lab 5÷7 - Stress analysis. Execute a linear static analysis using solid elements.	
Lab 8 - Stress analysis. The influence of mesh density on displacement and stress results. Employ various methods to present FEA results.	2
Lab 9 - Stress analysis. Use mesh controls. Understand stress concentrations. Extract reaction forces.	2
Lab 10 - Stress analysis. Compatible and incompatible meshes.	2
Lab 11 - Stress analysis. Contact analysis.	2
Lab 12,13 - Stress analysis. Symmetrical and free self-equilibrated assemblies.	4
Lab 14 - Design study to analyze trends when specific parameters are varied.	2
Lab 15 - Find optimum value of some design parameters.	2
Sum	30

TEACHING TOOLS

Power Point presentations, lecture notes, sample problems.
- Laboratory tutorials.
- Computer workstations equipped with the SolidWorks program -educational license.

WAYS OF ASSESSMENT (F-FORMATIVE, S-SUMMATIVE

F1. - assessment of preparation for laboratory exercises

F2. - assessment of the ability to apply the acquired knowledge while doing the exercises

F3. - evaluation of reports on the implementation of exercises covered by the curriculum

F4. - assessment of activity during classes

S1. - assessment of the ability to solve the problems posed and the manner of presentation obtained results - pass mark *

S2. - assessment of mastery of the teaching material being the subject of the lecture - test

*) in order to receive a credit for the module, the student is obliged to attain a passing grade in all laboratory classes as well as in achievement tests.

STUDENT'S WORKLOAD

No.	Forms of activity	Average number of hours required for realization of activity				
1	1. Contact hours with teacher					
1.1	Lectures	15				
1.2	Tutorials	0				
1.3	Laboratory	30				
1.4	Seminar	0				
1.5	Project	0				
1.6	Examination	0				
	Total number of contact hours with teacher:	45				
2	. Student's individual work					
2.1	Preparation for tutorials and tests	0				
2.2	Preparation for laboratory exercises, writing reports on laboratories	35				
2.3	Preparation of project	0				
2.4	Preparation for final lecture assessment	10				
2.5	Preparation for examination	0				
2.6	Individual study of literature	10				
	Total number of hours of student's individual work:	55				
	Overall student's workload:	100				
Overa	ll number of ECTS credits for the module	4 ECTS				
Numb superv	er of ECTS points that student receives in classes requiring teacher's vision:	1.8 ECTS				
	er of ECTS credits acquired during practical classes including laboratory ses and projects:	2.6 ECTS				

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

- 1. Akin J.E.: Finite Element. Analysis Concepts. Via SolidWorks, World Scientific, 2010.
- 2. Dassault Systems SolidWorks Corporation: Introduction to Simulation. SOLIDWORKS Simulation, USA, 2017.
- 3. Dassault Systems SolidWorks Corporation: SOLIDWORKS Education Edition 2016-2017. Fundamentals of 3D Design and Simulation, USA, 2017.
- 4. Dassault Systems SolidWorks Corporation: SOLIDWORKS Simulation. SOLIDWORKS 2016 Training, USA, 2016.
- 5. Dassault Systems SolidWorks Corporation: SOLIDWORKS Web Help 2020.
- 6. Dechaumphai P., Sucharitpwatskul S.: Finite Element Analysis with SOLIDWORKS Simulation, Alpha Science, 2019.
- 7. Gill P.E.: Practical optimization. Academic Press, New York, 2000.
- 8. Nudehi S.S., Steffen J.R.: Analysis of Machine Elements Using SOLIDWORKS Simulation 2019, SDC Publications, 2019.
- 9. SilvaV. D.: Mechanics and Strength of Materials, 2006.

10. Verma G., Weber M.: SolidWorks Simulation 2017 Black Book, CADCAMCAE Works, 2016.

11. Woyand H.-B.: FEM mit CATIA V5, J. Schlembach Fachverlag Wilburgstetten, 2009.

12. Zeid I.: Mastering SolidWorks, Pearson Peachpit, 2014.

MODULE COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

Dr hab. inż. Dawid Cekus prof. PCz -cekus@imipkm.pcz.pl