SYLLABUS OF A MODULE

Polish name of a module	Metrologia techniczna	
English name of a module	Engineering metrology	
ISCED classification - code	0710	
ISCED classification - Field of study	Engineering & engineering trades	
Language of instructions	English	
Level of qualification:	1 – BSc (EQF 6)	
Number of ECTS credit points	5	
Examination:	A - assignment	
Available in semester:	S – spring only	

Number of hours per semester:

Lecture	Tutorial	Laboratory	Seminar	E-learning	Project
30	0	30	0	0	0

MODULE DESCRIPTION

MODULE OBJECTIVES

- O1. To provide knowledge of measuring techniques and methods of engineering quantities
- O2. Ability to conduct experiment

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Fundamentals of mathematics, physics, mechanics, statistics, thermodynamics and fluid mechanics
- 2. Ability of individual work and collaboration in a group
- 3. Knowledge of the principles of work safety when using machinery and technological equipment.

LEARNING OUTCOMES

- LO 1 Student knows measuring techniques and methods, their applicability and limitations
- LO 2 Student is able to prepare experiment and to carry out the measurements
- LO 3 Student knows the rules of functioning of different types of probes and sensors, machines for roughness and waviness measurements.

MODULE CONTENT

Type of classes – lecture	Number of hours
Lec 1-2 - Introduction to metrology, basic definitions. Measurement, measurement	2
chain, uncertainty, errors. Characteristics of measuring devices.	4
Lec 3 - History of measurements. ISO standards. Definition of the system of tolerances	1
and fits of shafts and holes. Measurement errors. Direct and indirect measurements.	1
Lec 4-5 - Length and angle standards. Basic measurements instruments - callipers,	
micrometres and sensors (classic and electronic). Measuring machines.	2
Interferometers. Selection of measuring instruments.	
Lec 6-7 - Measurements of shafts, holes and mixed dimensions. Angle and cone	2
measurements.	2
Lec 8-9 - Classic and optical measurements of threads and gears.	2
Lec 10-11 - The parameters of roughness and waviness. Methods of contact and optical	2
measuring surface roughness. Stereometric method of measuring surface roughness.	2
Lec 12-13 - Optical measuring - theory, technique and methods of measuring.	2
Lec 14-17 – Coordinate Measuring Machines. Theory, technique and methods of	А
coordinate measurement.	4
Lec 18-19 - Requirements to be satisfied by measuring techniques applied to dynamic	
systems (vibrations, turbulent flows etc.). Requirements to be satisfied by	2
anemometers.	
Lec 20-21 - Flow rate measurements.	2
Lec 22-23 - Hot wire anemometry. Constant Current (CCA) and Constant Temperature	•
(CTA) Anemometers.	2
Lec 24-25 - Laser Doppler Anemometry (LDA)	2
Lec 26-27 - Particle Image Velocimetry (PIV). Other techniques for flow velocity	
measurements - Particle Tracking Velocimetry (PTV), Ultrasonic Doppler Velocimetry	2
(UDV), Optical Coherence Tomography (OCT).	
Lec 28-29 - Measurements of loads in flows. Techniques for shear stress	•
measurements. Measurements of flow pollutants concentration, aspirating probes.	2
Lec 30 - Flow visualisation techniques. Schlieren, smoke visualisation, oil visualisation.	
Hologram interferometry. Electrical Resistance Tomography (ERT) , Electrical	1
Impedance Tomography (EIT), Magnetic Resonance Imaging (MRI).	
Sum	30
	Number
Type of classes– laboratory	of
	hours
Lab 1-4 - Measurements of shafts, holes and mixed dimensions with micrometre, calliper	_
and workshop microscope	4
Lab 5-6 - Indirect measurements using gauge plates (Johansson blocks) and sensors	2
Lab 7-8 - Measurements of threads on a microscope using rollers and gauges.	2
Lab 9-13 - Geometry measurements on a 3D CMM ZEISS ECLIPSE coordinate measuring	-
machine. Zeiss Calypso software.	5
Lab 14-15 - Surface roughness measurements on 3D Taylor Hobson NTFS 60	_
profilometer. Circularity measurements on 3D Talyrond 365.	2
Lab 16-19 - Determination of a discharge coefficient of an orifice	4
Lab 20-21 - Application of hot-wire anemometer (CCA) to measure temperature field in	
nonisothermal flow.	2

Lab 22-25 - Measurement of velocity distribution in turbulent flow by means of CTA		
system.	4	
Lab 26-28 - Flow velocity measurements using LDA	3	
Lab 29-30 - Flow visualization with the use of PIV	2	
Sum	30	

TEACHING TOOLS

- **1.** Lecture with the use of multimedia presentations
- **2.** Experimental stands equipped with measuring instrumentation
- **3.** Instructions to laboratory exercises
- 4. Coordinate Measuring Machine, universal form testers for the analysis of roughness, cylindricity

WAYS OF ASSESSMENT (F - FORMATIVE, S - SUMMATIVE)

- **F1** assessment of preparation for laboratory exercises
- F2 assessment of the ability to apply the acquired knowledge while doing the exercises
- F3 evaluation of reports on the implementation of exercises covered by the curriculum
- **F4** assessment of activity during classes
- **S1** assessment of the ability to solve the problems posed and the manner of presentation obtained results pass mark *
- **S2** assessment of mastery of the teaching material being the subject of the lecture exam

STUDENT'S WORKLOAD

No	Form of activity	Average number of hours required for realization of activity		
1	1. Contact hours with teacher			
1.1	Lectures	30		
1.2	Tutorials	0		
1.3	Laboratory	30		
1.4	Seminar	0		
1.5	Project	0		
1.6	Examination	0		
	Total number of contact hours with teacher:	60		
2	2. Student's individual work			
2.1	Preparation for tutorials and tests	15		
2.2	Preparation for laboratory exercises, writing reports on laboratories	30		
2.3	Preparation of project	0		
2.4	Preparation for final lecture assessment	10		
2.5	Preparation for examination	0		
2.6	Individual study of literature	10		
	Total number of hours of student's individual work: 65			

^{*)} in order to receive a credit for the module, the student is obliged to attain a passing grade in all laboratory classes as well as in achievement tests.

Overall student's workload:	125 ECTS
Overall number of ECTS credits for the module	5 ECTS
Number of ECTS points that student receives in classes requiring teacher's supervision:	2.4 ECTS
Number of ECTS credits acquired during practical classes including laboratory exercises and projects	2.4 ECTS

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

1.	Bosch J.A.: Coordinate Measuring Machines and Systems. Marcel Dekker, Inc. New York, Basel, Hong Kong
	1995

- 2. Bucher J. L.: The Metrology Handbook. Quality Press, 2nd edition, 2012
- 3. Drake P..: Dimensioning and Tolerancing Handbook. McGraw-Hill, New York, 1999.
- 4. Drake P.: Dimensioning and Tolerancing Handbook. McGraw-Hill, New York, 1999
- 5. Durst F.: Fluid Mechanics. An introduction to the theory of fluid flows. Springer-Verlag, Berlin, 2008
- 6. Elsner J.W., Drobniak S.: Metrologia turbulencji przepływów. Ossolineum, Wrocław, 1995
- 7. Goldstein R.J.: Fluid mechanics measurements. Taylor & Francis, 1996
- 8. Henzold G.: Handbook of Geometrical Tolerancing. Design, Manufacturing and Inspection. John Willey & Sons, Chichester 1995
- 9. Hocken R. J., Paulo H. Pereira P. H.: Coordinate Measuring Machines and Systems. CRC Press, 2012
- 10. Leach R.: Optical Measurement of Surface Topography. Springer; 2011
- 11. Meadows J.D.: Geometric Dimensioning and Tolerancing: Applications and Techniques for Use In Design, Manufacturing and Inspection. Marcel Dekker, Inc. New York 1995.
- 12. Whitehouse D.J.: Handbook of surface metrology. Institute of Physics. Bristol 1994
- 13. Whitehouse D.J.: Surfaces and their Measurement. Kogan Page Science, 2004
- 14. Yoshizawa T.: Handbook of Optical Metrology: Principles and Applications, CRC Press, 2015

MODULE COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

dr inż. Dariusz Asendrych darek@imc.pcz.pl

dr inż. Andrzej Piotrowski apiotr@itm.pcz.pl