Subject (course) name: Introde	uction to Electronics		
Field of study: Electronics and Communications Specialty: all		Subject code: 2K	
		Title graduate: Engineer	
Type of course: major course, obligatory	Course level: First-cycle studies	Year: II Semester: III Semester: winter	
Form of classes: Lectures, Classes, Labs, Seminar, Project	Number of hours per week: 1L, 1, 2Lab, 0, 0	Credit points: 5 ECTS	

GUIDE TO SUBJECT

SUBJECT OBJECTIVES

- C1. General knowledge of basic semiconductor devices.
- C2. Techniques of analysis and design of elementary analog circuits.
- C3. Practical skills in measurement of semiconductor devices and elementary analog circuits.

SUBJECT REQUIREMENTS

- 1. Math fundamentals.
- 2. Basic knowledge of circuit theory.
- 3. General ability of individual and group work
- 4. General ability to search in literature

LERNING OUTCOMES

- EK 1 Student will be able to classify basic semiconductor devices and explain their principle of operation.
- EK 2 Student will be able to conduct an analysis of elementary analog circuits and formulate simple conclusions.
- EK3 Student will be able to design simple analog circuits.
- EK4 Student will be able to conduct the measurements of the basic parameters of analog circuits and process the measurement data.

SUBJECT CONTENT

Form of classes - lectures

Topic	Hours
W1 – Semiconductor diode – large signal characteristics	1
W2 – Dynamic resistance and a small signal model of a diode	1
W3 – Basic applications of diodes	1
W4 – Bipolar transistor, I-V characteristics and large-signal models	1
W5 – Small-signal model of a bipolar transistor	1
W6 – Transistor as a switch	1
W7 – Elementary amplifiers-part I	1
W8 - Elementary amplifiers-part II	1
W9 - Transistor MOS, I-V characteristics and large-signal models	1
W10 - Small-signal model of a MOS transistor	1
W11 – MOS transistor as a switch	1
W12 – Elementary amplifiers based on a MOS transistor	1

W13 – Operational amplifier-basic characteristics		1
W14 – Basic applications of an operational amplifier – part I		1
W15 – Basic applications of an operational amplifier – part II		1
	Total	15

Form of classes - exercise classes

Topic	Hours
C1 – Large-signal applications of semiconductor diodes	1
C2 – Small-signal applications of semiconductor diodes	1
C3 – I-V characteristics of a bipolar transistor	1
C4 – DC operating point of a transistor amplifier	1
C5 – Transistor amplifiers – part I	1
C6 – Transistor amplifiers – part II	1
C7 – Transistor as a switch	1
C8 – Test no. 1	1
C9 – I-V characteristics of a MOS transistor	1
C10 – Transistor amplifiers (MOS) – part I	1
C11 – Transistor amplifiers (MOS)– part I	1
C12 – Linear applications of an operational amplifier – part I	1
C13 – Linear applications of an operational amplifier – part II	1
C14 – Nonlinear applications on an operational amplifier	1
C15 – Test no. 2	1
Total	15

Form of classes - laboratory

Topic	Hours
L0 – Introduction	2
L1 – Semiconductor diodes	2
L2 – Small-signal amplifier	2
L3 – Operational amplifier	2
L4 – First-order low-pass and high-pass filters	2
L5 – Multivibrators	2
L6 – Voltage regulators	2
L7 – Zener diodes	2
L8 – Operating point of a bipolar transistor	2
L9 – Schmitt trigger	2
L10 – Active filters	2
L11 – Nonsinusoidal oscillators	2
L12 – Switching regulators	2
L13 – Spare term	2
L14– Final assessment	2
Total	30

STUDY METHODS

- 1. Lectures2. Exercises analysis and design of electronic circuits
- 3. Laboratory measurement of electronic circuits teamwork

EDUCATIONAL TOOLS

- 1. Textbook with exercises for individual practice
- 2. Laboratory instructions
- 3. Measurement equipment

METHODS OF ASSESMENT (F – Forming, P – Summary)

- **F1.** assessment of laboratory reports
- F2. two tests during the course of study
- P1. lecture exam
- P2. exercise classes average result from two tests during the course of study
- P3. laboratory average result from all laboratory reports during the course of study

STUDENT WORKLOAD

Form of activity		Averaged	d workload (ho	urs)
		[h]	Σ [h]	ECTS
Participation in class activities	lecture	15		
exercis	e classes	15	65	3
	aboratory	atory 30		3
individual con	sultations	5		
Preparation for tutorials (reading literature)		6		
Preparation for lab classes		12		
Preparation of lab reports		12	60	2
Preparation for tests (exercise classes)		12		
Preparation for final exam		18		
Total		·	125	5

A. BASIC READING

- 1. T.F. Floyd, D.M. Buchla, "Electronics fundamentals", 8-th ed. Prentice Hall, 2009
- 2. T.F. Floyd, "Electronic devices: electron flow version", 9-th ed. Prentice Hall, 2012

B. FURTHER READING

- 1. Tietze U. Schenk Ch. Electronic Circuits –Handbook for Design and Application, 2-nd ed. 2008
- 2. Various catalogues and application notes from components manufacturers

Learning objectives	In relation to the learning outcomes specified for the field of study	Subject objectives	Study methods	Methods of assessment
EK1	K_W13 K_U07 K_U09 K_U15	C1, C2	lecture	P1
EK2	K_W13 K_U07 K_U09 K_U15	C2	Exercise classes	F2,P2
EK3	K_W13 K_U07 K_U09 K_U15	C1,C2	Lecture, exercise classes	F2,P2
EK4	K_W13	C1,C3	laboratory	F1, P3

II. EVALUATION

Grade	Outcome
EK1	Student is able to classify and explain the principle of operation of basic semiconductor
	devices
2 (F)	Student is <u>not</u> able to draw I-V characteristics of a device, nor explain its principle of operation
3 (E)	Student is able to draw I-V characterictics of a device and roughly explain its principle of operation
4 (C)	Student is able to draw I-V characteristics of a device and explain its principle of operation giving basic characteristics and formulas
5 (A)	Student is able to draw I-V characteristics of a device and explain its principle of operation giving
	basic characteristics and formulas. Student has a knowledge of second-order effects and possible
	applications the device
EK2	Student is able to analyse the operation of basic analog circuits and formulate basic
	conclusions
2 (F)	Student grade for solving a set of exercises is lower than 50%
3 (E)	Student grade for solving a set of exercises is equal to 50%
4 (C)	Student grade for solving a set of exercises is equal to 70%
5 (A)	Student grade for solving a set of exercises is equal to 90%
EK3	Student is able to design simple and typical electronic circuits
2 (F)	Student grade for solving a set of exercises is lower than 50%
3 (E)	Student grade for solving a set of exercises is equal to 50%
4 (C)	Student grade for solving a set of exercises is equal to 70%

5 (A)	Student grade for solving a set of exercises is equal to 90%
EK4	Student is able to design the measurements of the basic parameters of analog circuits and process the measurement data
2 (F)	Student is not able to conduct the correct measurements and calculations
3 (E)	Student is able to present at least 50% of correct measurements and calculations
4 (C)	Student is able to present at least 80% of correct measurements, calculations and correct conclusions
5 (A)	S Student is able to present at least 95% of correct measurements, calculations and correct conclusions

III. OTHER USEFUL INFORMATION

- 1. All information for students on the schedule are available on the notice board and on the website: www.el.pcz.pl
- 2. Information on the consultation shall be provided to students during the first lecture and will be placed on the website www.el.pcz.pl
- 3. Terms and conditions of credit courses will be provided to students during the first lecture