Syllabus template

Course title: Nanomaterials in environmental science			
Programme:		Code: 0712	
Type of course: Erasmus	Course level:	Semester:	
Form of classes: lectures, project	Number of hours: 15L, 15P	Credit points: 5 ECTS	
Education profile: Enrolment: yes/ no		Course language: English	

GUIDE TO THE SUBJECT

I. COURSE CHART

COURSE OBJECTIVES

- **C.1.** Knowledge of definition of nanomaterials and specific properties of nanomaterials.
- **C.2.** Using of nanoparticles as cathalysts of process in environmental science (energy, water treatment, storage)
- **C.3.** Methods of obtaining and materials used most often in nano technology.

PRELIMINARY COURSE REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Knowledge of chemistry and physics, heat engineering.
- **2.** Ability to use professional literature

LEARNING OUTCOMES

- **EK 1-** Student know the kind of nanomaterials and their environmental applications
- **EK 2 -** Student know the definition of nanomaterials and specific properties of nanoscale materials

COURSE CONTENT

Form of classes - lectures	Hours
W1-W2 Definition of materials in nanoscale and specific properties	2
W3-W4 Production of nanomaterials, specific role of nanomaterials in environment, procedure of nanoparticles deposition	2
W5-W6 Structure of nanomaterials (nanowire, dendrimers, nanoparticles, etc.), nanoparticles alloys, kind of compounds of materials	2
W7-W8 Nanotechnology in agricultural applications.	2

W9-W10 Nanomaterials in hydrogen technology- fuel cells, nanomaterials as catalysts for electrochemical reactions, nanoparticles as	2
energy carrier	
W11-W12 Nanomaterials as biomaterials in medicine	2
W13-W14 Carbon based materials as nanomaterials (crop yield, nanoencapsulation, sorbents, plant protection, antimicrobial agents, etc.)	2
W15- Novelty in nanomaterials	1
Form of classes - project	Hours
P1-P4 Selection of the nanomaterial application area	4
11-14 Selection of the nanomaterial application area	
P5- P9 Development of a procedure for the use of nanomaterials	4
	4

COURSE STUDY METHODS

1. blackboard, samples	
2. multimedia presentation	

METHODS OF ASSESMENT (F - formative; S - summative)

F1. – activity in classes		
F2. – evaluation of task solving		

STUDENT WORKLOAD

Form of activity	Workload (hours)	
Participation in lectures	15 h	
Participation in classes	-	
Laboratory	-	
Participation in project classes	-	
Participation in seminar	-	
Preparation course on e-learning	-	
Test	-	
Entrance test for laboratory classes	-	
Project's defence	15h	
Exam	-	
Consultation hours	2 h	
DIRECT TEACHING, hours/ ECTS	32 h / 3 ECTS	
Preparation for tutorials	-	
Preparation for laboratories	-	
Preparation for projects	4 h	
Preparation for seminars	-	
Preparation for e-learning classes	-	
Participation in e-learning classes	-	
Working on project	4 h	
Preparation for tests	-	
Preparation for exam	-	

SELF-STUDY, hours/ ECTS	8 h / 2 ECTS
TOTAL (hours)	∑ 40 h
TOTAL ECTS	5 ECTS

PRIMARY AND SUPPLEMENTARY TEXTBOOKS

- Małgorzata Lewandowska, Ktrzysztof Kurzydłowski, Nanomateriały inżynierskie, PWN, Warszawa 2011
- 2. Ashby M., Sherclif H., Cebon D.: Inżynieria materiałowa. Tom 1, 2. Wyd. Galaktyka, Łódź, 2011
- 3. Przybyłowicz K., Metaloznawstwo, WNT, Warszawa 1992.
- 4. Staub F., Metaloznawstwo, Wydawnictwo "Śląsk", Katowice 1979.
- 5. Dobrzański L.: Podstawy nauki o materiałach i metaloznawstwo. WNT, Warszawa, 2002

SUBJECT COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

1. dr inż. Renata Włodarczyk, rwlodarczyk@is.pcz.czest.pl

NAME OF LECTURER (s) (NAME, SURNAME, E-MAIL ADDRESS)

1. dr inż. Renata Włodarczyk, rwlodarczyk@is.pcz.czest.pl

Learning outcome	In relation to the learning outcomes specified for the field of study	Course objectives	Course content	Course study methods	Methods of assesment
EK 1		W1-W15	C1-C3	1, 2	F1, F2
EK 2		W1-W15	C1-C3	1, 2	F1, F2
EK 3		P1-P15	C1-C3	1, 2	F1, F2

II. OTHER USEFUL INFORMATION

- 1. All the information on the class schedule is posted on the student information board and online at: www.is.pcz.pl
- 2. The information about the consultation hours is provided to students on the first class meeting and posted online at rwlodarczyk@is.pcz.czest.pl
- 3. The information on course completion and grade is provided to students on the first class meeting.