Subject (course) name: Opera	ations research		
Field of study: Computer Science		Subject code:	
Specialization: -		Title graduate: BSc	
Type of course: obligatory	Course level: Second-cycle studies	Year: I Semester: II Semester: summer	
Form of classes: Lectures, Classes, Labs, Seminar, Project	Number of hours per week: 2L, 0C, 2Lab, 0S, 0P	Credit points: 4 ECTS	

GUIDE TO SUBJECT

SUBJECT OBJECTIVES

- C1. Solving of linear and nonlinear exercises (Simplex method and Lagrange method).
- C2. Acquaintance with Matlab (The MathWorks, Inc.) programming language (The Language of Technical Computing).
- C3. Learning syntax of scripts in Matlab programming language.
- C4. Acquaintance with functions in Optimization toolbox.
- C5. Acquaintance with functions in Global Optimization toolbox.

SUBJECT REQUIREMENTS

- 1. Basic knowledge of programming concept involving conditional expressions and loops.
- 2. Basic computer skills.
- 3. Knowledge of English.

LEARNING OUTCOMES

- EK 1 Student understands fundamentals of analytical optimization methods: Simplex method, Lagrange Method Kuhn-Tucker Method.
- EK 2 Student is able to perform analysis of sampled optimization problem
- EK 3 Student is able to write Matlab scripts to construct and solve optimization problem
- EK 4 Student knows selected applications of multivariable optimization methods and global optimization methods

SUBJECT CONTENT

Form of classes - Lectures

Contents	Number of hours
L 1 - Introduction to decision analysis and operations research. Decision making	2
process. Probabilistic modelling and simulation.	
L 2 - Introduction to mathematical programming. Linear programming.	3
L 3 - Simplex method, standard and canonical form, implementation of the algorithm.	3
L 4 - Sensitivity analysis.	2
L 5 - Nonlinear Programming. Unconstrained nonlinear optimization.	2
L 6 - Constrained nonlinear optimization.	2
L 7 - Equation solving. Least squares method, model fitting.	2
L 8 - Network optimization. Shortest path problem in graph. Logistical and	2
transportation planning methods.	
L 9 - Multiobjective optimization. The goal attainment method. Minimizing the	2
maximum objective.	
L 10 - Multiobjective optimization - Pareto optimization.	4
L 11 - Computer applications in optimization. Systems optimization: models and	4
computation. Advanced algorithms. Engineering risk analysis of investment. Systems	
supporting decision making process.	
Test	2
Total:	30

Form of classes - laboratory

Contents	Number of hours
Lab1 - Using a spreadsheet for solving linear programming tasks, transport tasks and	2
non-linear programming	
Lab2 - Application of optimization procedures in the MatLab (Optimization Toolbox)	2
package to solve tasks from operations research	
Lab3 - The use of linear programming procedures in MatLab to solve operations	2
research tasks	
Lab4 - The use of unconstrained nonlinear optimization procedures in MatLab for	2
solving operations research tasks	
Lab5 - Use of constrained nonlinear optimization procedures in MatLab to solve	3
operations research tasks	
Lab6 - The use of optimization procedures to determine mathematical models and	2
approximation of chronological series	
Lab7 - Application of network programming methods, shortest path algorithm, shortest	2
path algorithm in acyclic networks, determining the critical path	
Lab8 - Application of optimization methods to solve systems of equations	2
Lab9 - Dynamic optimization models	2
Lab10 - The use of evolutionary algorithms for optimization	3
Lab11 - Multi-criteria optimization with the use of various solvers	3
Lab12 - Use of the global optimization function from the Global Optimization Toolbox	3
Practical test	2
Total:	30

STUDY METHODS

- 1. Lectures using multimedia presentation, accompanied by discussion.
- 2. Laboratory experiments work in groups on computers with dedicated software

EDUCATIONAL TOOLS

1. Audiovisual equipment, blackboard, lecture slides in PDF version

 Computers with spreadsheet software and with Matlab/Simulink software including Optimization and Global Optimization Toolboxes.

METHODS OF GRADING (F - Forming, P - Summary)

F1. Laboratory - preparation to lab experiments - individual oral answer (50% of the laboratory grade)

F2. Laboratory - individual reports (pdf files, scripts) with results of lab experiments (50% of the laboratory grade)

P1. Lectures - written final test

STUDENT WORKLOAD

Form of activity	Average	Averaged workload (hours)		
	[h]	∑ [h]	ECTS	
Participation in class activities lecture	es 30	60	2.5	
laborat	ory 30	60	2.5	
Studying literature	10			
Preparation to laboratory and preparation of lab repo	orts 15	40	1.5	
Preparation to the exam	15			
Тс	tal	100	4	

A. BASIC READING

1. Blumenfeld D., Operations Research. Calculations Handbook, CRC Press, 2009

2. The Mathworks Inc.: Optimization Toolbox. User's Guide, http://www.mathworks.com

3. The Mathworks Inc.: Global Optimization Toolbox. User's Guide, http://www.mathworks.com

B. FURTHER READING

1. Eiselt H.A., Sandblom C.-L., Operations Research. A Model-Based Approach, Springer-Verlag Berlin Heidelberg 2010

2. Hillier F.S., Lieberman G.J., Introduction to Operations Research, McGraw-Hill Companies, Inc, 2001

Learning outcomes	In relation to the learning outcomes specified for the field of study	Subject objectives	Study methods	Methods of assessment
EK1	K_W14 K_U08	C1	lectures, laboratory	F1, F2, P1
EK2	K_W10 K_W17 K_U08 K_K02	C2, C5	lectures, laboratory	F1, F2, P1
EK3	K_W09 K_U16 K_U22	C3, C5	lectures, laboratory	F1, F2, P1
EK4	K_W08 K_U10	C4	lectures	P1

II. EVALUATION

Grade	Outcome	
EK1	Student understands fundamentals of analytical optimization methods: Simplex method,	
	Lagrange Method Kuhn-Tucker Method	
2 (F)	Student does not know basics of analytical optimization method	
3 (E)	Student has partial formal knowledge of basics of analytical optimization method	
4 (C)	Student has knowledge of analytical optimization method basics but without full understanding	
5 (A)	Student knows and fully understands basics of analytical optimization method	
EK2	Student is able to perform analysis of sampled optimization problem	
2 (F)	Student does not know how to construct optimization model	
3 (E)	Student knows about objective function and constraints but is not able to apply it to analysis	
4 (C)	Student is able to perform analysis of optimization model but does not understand details	
5 (A)	Student performs analysis of optimization model understanding construction of constraints	
EK3	Student is able to write Matlab scripts to construct and solve optimization problem	
2 (F)	Student is not able to design and implement even a simple scripts	
3 (E)	Student is able to design only simple scripts	
4 (C)	Student is able to design scripts but do not know all useful methods	
5 (A)	Student designs and implements optimization problem using suitable software tools if needed	
EK4	Student knows selected applications of multivariable optimization methods and global	
	optimization methods	
2 (F)	Student does not know (with some details) any application of multivariable optimization methods	
	and global optimization methods	
3 (E)	Student is able to enumerate presented applications and describe at least one of them	
4 (C)	Student knows applications of multivariable optimization methods and global optimization methods	
	and his/her knowledge is mostly correct	
5 (A)	Student knows all presented applications of multivariable optimization methods and global	
	optimization methods, can describe them in details and is able to perform advanced scripts	

III. OTHER USEFUL INFORMATION

- 1. All information for students on the schedule are available on the notice board and on the website: <u>www.el.pcz.pl</u>
- 2. Information on the consultation shall be provided to students during the first lecture and will be placed on the website <u>www.el.pcz.pl</u>
- 3. Terms and conditions of credit courses will be provided to students during the first lecture