Subject name	Transport infrastructure management
Course of study	Quality and Production Management
The form of study	Full-time
Level of qualification	First
Year	III
Semester	VI
The implementing entity	Department of Logistics and International Management
The person responsible for preparing	Dr inż. Robert Sałek
Profile	general academic
Course type	other
Number of ECTS points	3

TYPE OF CLASSES - NUMBER OF HOURS IN SEMESTER

LECTURE	CLASS	LABORATORY	PROJECT	SEMINAR
15	15	-	-	-

COURSE AIMS

C1. Presentation and discussion of elements of transport infrastructure and the role it plays in the transport processes of manufacturing and service enterprises.

C2. Characteristics of the functioning of transport equipment as the most important element of the enterprise's transport infrastructure.

ENTRY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. The student demonstrates knowledge of the basic principles of technical drawing.
- 2. The student applies basic mathematical and physical formulas.
- 3. The student is familiar with the basic issues in the field of transport.
- **4.** The student interprets machine diagrams and drawings of devices as well as technical systems.

LEARNING OUTCOMES

EU1 - The student identifies and classifies elements of transport infrastructure in the enterprise.

EU2 - The student indicates the right devices and infrastructure elements that enable the proper conduct of the transport process.

EU3- Student performs calculations for selected subassemblies of transport devices.

EU4- Student calculates the efficiency of transport devices working in cyclic and continuous motion for a selected problem in internal transport.

COURSE CONTENT

Type of teaching IECTUDES 15 hours				
Type of teaching - LECTORES 15 hours	of hours			
W1 Discussion of basic issues in the field of transport infrastructure	1			
W2 Logistics infrastructure and transport infrastructure	1			
W3 Roads and transport hubs within the enterprise	1			
W4 Public roads as elements of the enterprise's transport infrastructure	1			
W5 Buildings and structures as elements of the company's infrastructure	1			
W6 Means of transport and packaging	1			
W7 Storage and handling equipment	1			
W8 Lorry trolleys - characteristics and classification	1			
W9 Lorry trolleys - planning reloading work	1			
W10 Cranes - characteristics and classification	1			
W11 Cranes - performance calculations	1			
W12 Conveyors - performance calculations	1			
W13 Planning of transport operations	1			
W14 Telecommunications equipment and networks as elements of the enterprise's				
infrastructure	I			
W15 The importance of infrastructure for safety in close and in-house transport	1			
Type of teaching - CLASS 15 hours	Number of hours			
C 1,2,3 Analysis of the functioning of the production enterprises' infrastructure on the	3			
basis of its main components.	5			
C 4,5,6 Organizational activities in the areas of functioning of the most important				
elements of transport infrastructure.				
C 7,8,9 Problems of planning transport and reloading operations using the available				
infrastructure.				

C 10,11,12 Calculations of the work efficiency of selected transport devices	3
C 13,14, Planning of transport operations using available transport means.	2
C 15 - Final test	1

TEACHING TOOLS

- 1. Handbook
- 2. Transparencies
- 3. Audio-visual equipment
- 4. PC
- 5. E-learning platform

WAYS OF ASSESSMENT (F – FORMATIVE, P – SUMMATIVE)

- F1. Computational and analytical tasks
- P1. Test

STUDENT WORKLOAD

Form of activity	Average number of hours for realization of the activity
Contact hours	30
Preparing for the exercises	10
Preparation for the test	10
Getting to know the literature of the subject	10
Consultation	15
TOTAL NUMBER OF HOURS	\sum 75
ECTS POINTS FOR THE COURSE	\sum 3

6. BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

Basic resources:

- 1. Hilde Meersman, Eddy van de Voorde, Willy Winkelmans. Transport Models and Systems Vol. 1. Amsterdam : Elsevier, 1999.
- 2. Konstadinos G. Goulias. Transport Science and Technology, Bingley : Emerald Group Publishing Limited, 2007.
- 3. Ann M. Brewer, Kenneth J. Button, David A. Hensher. Hanbook of Logistics and Supply-Chain Management, Amsterdam : Elsevier Science, 2001.
- 4. David A. Hensher., Hanbook of Transport Geography and Spatial Systems, Amsterdam : Elsevier Science, 2004.
- 5. Fair, Marvin L., Williams, Ernest W. Economics of transportation, New York: Harper & Brothers, 1959,
- 6. Hensher, David A., Brewer, Ann M., Transport : an economics and management perspective, Oxford University Press. New York : 2004,

Supplementary resources:

- 1. Knowles, Richard D., Shaw, Jon. Red, Docherty, Iain. Red, Transport geographies: mobilities, flows and spaces, Malden ; Oxford : Blackwell Publishing, 2008,
- 2. Anna Brzozowska, Economical and Organizational Aspects of Transportation Processes, Czestochowa University of Technology, 2010. Monograph
- 3. David A. Hensher, Kenneth J. Button, Handbook of Transport Modelling, Amsterdam :Elsevier, 2008.
- 4. Moshe Ben-Akiva, Hilde Meersman, Eddy van de Voorde, Recent Developments in Transport Modelling: Lessons for the Freight Sector, Bingley: Emerald Group Publishing, 2008.
- Sałek R., Wiśniewska-Sałek A., Nowakowska-Grunt J., Brzozowska A., Small Business Management in Relationships of Micro and Macro Environment, International Institute of Social and Economic Sciences (IISES), 22nd International Academic Conference, Lizbona, Portugalia, Praga 2016, s.320-330
- 6. Sałek R., Szczepanik T., Micro-Logistic Aspects of Managing the Health and Safety System of Manufacturing Enterprises, [w:] (red.) Skowron-Grabowska B., Logistics and Marketing Determinants of Enterprises Management, Vysoka Skola Banska Technicka Univerzita Ostrava, Ostrava 2015, s.160-167.
- 7. Sałek R., Efficiency of internal transportation layouts in logistics process. [w:] Szołtysek J., (Ed.) Logistics and Supply Chain Management in Polish, Russian and Ukrainian Research. Publish. Univ. Econ. in Katowice, Katowice 2011, s. 81-97.

TEACHERS (NAME, SURNAME, E-MAIL ADDRESS)

Dr inż. Robert Sałek, lectures, exercises

robert.salek@wz.pcz.pl

MATRIX OF LEARNING OUTCOMES REALISATION

Learning outcome	Reference of given outcome to outcomes defined for whole program (PRK)	Course aims	Course content	Teaching tools	Ways of assessment
EU1	K_W01, K_W09, K_U01, K_U05, K_K04	C1	W1-W5, W14,W15, C1-C6,	1, 2, 3,4	F1, P1
EU2	K_W02, K_W09, K_U02, K_U08 K_K04	C1	W1-W5, W14,W15, C1-C6,	1, 2, 3,4	F1, P1
EU3	K_W01, K_W06, K_U02, K_U06, K_K01	C2	W6-W13, C7-C14,	1, 2, 3,4	F1, P1
EU4	K_W05, K_U02, K_U09, K_K02	C2	W6-W13, C7-C14,	1, 2, 3,4	F1, P1

	grade 2	grade 3	grade 4	grade 5
EU1	The student cannot replace the elements of transport and logistics infrastructure in the enterprise.	The student is able to replace all elements of transport and logistics infrastructure in the enterprise.	The student is able to discuss all elements of transport and logistics infrastructure in the company.	The student is able to discuss in detail and present all elements of transport and logistics infrastructure in the company.
EU2	The student cannot indicate the devices and elements of transport infrastructure in the transport problem.	The student is able to indicate only devices or elements of transport infrastructure in a selected transport problem.	Student is able to identify devices and elements of transport infrastructure in a selected transport problem.	The student can indicate the devices and elements of transport infrastructure for the proper course of transport processes in a selected transport problem.
EU3	The student cannot make basic calculations for transport devices.	The student knows how to make basic calculations for transport devices.	The student can make calculations of selected components or elements of transport equipment.	The student can make all calculations of known components and components of transport devices and understands their purpose.
EU4	The student cannot solve a simple transport issue regarding transport efficiency.	The student can solve a simple issue regarding transport efficiency of devices working in cyclic or continuous motion.	The student is able to solve the problem of transport efficiency of devices working in cyclic or continuous motion.	Student is able to solve a complex issue regarding transport efficiency of devices working in cyclic and continuous motion.

MATRIX OF LEARNING OUTCOMES REALISATION

ADDITIONAL USEFUL INFORMATION ABOUT THE COURSE

- 1. Information where presentation of classes, instruction, subjects of seminars can be found, etc. presented to students during first classes, if required by the formula classes are sent electronically to the e-mail addresses of individual dean groups.
- 2. Information about the place of classes Information can be found on the website of the Faculty of Management.
- 3. Information about the timing of classes (day of the week / time) Information can be found on the website of the Faculty of Management
- 4. Information about the consultation (time + place) Information can be found on the website of the Faculty of Management

.....

Coordinator