COURSE GUIDE

Subject name	Computer Simulation Of Production Processes
Course of study	Quality and Production Management
The form of study	Full-time
Level of qualification	First
Year	III
Semester	VI
The implementing entity	Department of Production Engineering and Safety
The person responsible for preparing	dr inz. Marek Krynke
<u>Profile</u>	General academic
Course type	principal
ECTS points	3

TYPE OF TEACHING - NUMBER OF HOURS PER SEMESTER

LECTURE	CLASS	LABORATORY	PROJECT	SEMINAR
15		30	-	-

COURSE AIMS

- C1. Presentation of methodological assumptions of modeling and simulation of production systems.
- C2. To acquaint students with IT systems allowing for modeling of elements of production systems and their simulation.
- C3. Reporting and analyzing results from the functioning of the production systems data and improving those elements.

ENTRY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Computer handling
- 2. Fundamentals of managing a manufacturing and / or service company.
- 3. Knowledge of the operation of information systems.

LEARNING OUTCOMES

- EU 1 Diagnose and solve problems in the organization using simulation methods and production process modeling.
- EU 2 Design and propose changes to the organization and / or its selected areas using expert knowledge in the field of simulation of production processes.
- EU 3 Identification of methods (including: simulation and modeling of production processes) and IT tools for problem solving in selected areas of organization functioning.
- EU 4 Student is able to solve optimization problems of production processes using the GNU Octave computing environment.

COURSE CONTENT

Type of teaching – Lecture	Number of hours
W 1 - Concepts of modeling and simulation theory. Objectives, conditions and stages of the	2
simulation model. Approaches to modeling the process and the system.	
W 2 - Modeling and simulation of production systems, construction of virtual production process model.	2
W 3 - Input data for production process modeling.	1
W 4 - Defining the problem and identifying and collecting needed data and information.	1
W 5 - The steps of modeling and simulating the production process system	1
W 6 - Selection of modeling and simulation software.	1
W 7 - Adding model logic and data management.	1
W 8 - Unit management and time tables. Grouping flow elements.	1
W 9 - Random models. Select the probability distribution. Use random sampling to control the simulation.	2
W 10 - Analysis of the resulting simulation data. Evaluation of profitability of production orders.	1
W 11 - The task of linear programming in the Gnu Octave environment.	1
W12 - The question of reliability modeling. Simulation of machine failure, use of personnel for repairs.	1
Type of teaching - LABORATORY	Number of hours
L 1- Introduction to the FlexSim simulation package - functionality and navigation in the system.	2
L 2- Use a diagramming and schematic design package to visualize system models / production processes (eg Visio).	2

L 3- Building the basic sequence of model components: source, queue, processor, sink. Parameterization of model components.	2
L 4- Construction of models and simulation of processes to test the workload of one station.	2
L 5- Construction of the work load test model for many parallel work stations.	4
L 6- Possibility to visualize system operation / production process in FlexSim simulation package.	2
L 7- Production and simulation of the production department model.	6
L 8 - Simulations involving operator and transporter.	4
L 9- Use of built-in analytical and optimization tools for simulation package for system / process analysis.	4
L 10 - Reports and statistics on simulation results as a source of information on the functioning of processes / production systems (from the FlexSim package).	2

TEACHING TOOLS

- 1. Books and monographs
- 2. Audiovisual presentation
- 3. Exercises using the computer and FlexSim software

WAYS OF ASSESSMENT (F – FORMATIVE, P – SUMMATIVE)

Fl.Observation of students' work in the classroom.

Pl. Final test.

STUDENT WORKLOAD

Form of activity	Average num	Average number of hours for realization of the activity		
	[h]	ECTS	ECTS	
Contact hours with the teacher LECTURE	15	0.6	0.8	
Preparation for exam	5	0.2	0.8	
Contact hours with the teacher LABORATORY	30	1.2	1.6	
Preparation of the laboratory	10	0.4	1.0	
Getting Acquainted with the indicated literature	10	0.4	0.4	
Consultation	5	0.2	0.2	
TOTAL NUMBER OF HOURS / ECTS POINTS FOR THE COURSE	75	3	3	

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

Basic resources:

- 1. Malcolm Beaverstock, Allen Greenwood, Eamonn Lavery, William Nordgren. Applied Simulation Modeling And Analysis Using Flexsim. FlexSim Software Products. 2012.
- 2. Averill M. Law. Simulation Modeling and Analysis. McGraw-Hill, 2015.
- 3. Kłos, S. The Simulation of Manufacturing Systems with Tecnomatix Plant Simulation. Oficyna Wydaw. Uniwersytetu Zielonogórskiego, 2017.

Supplementary resources:

- 1. Chin, Cheng Siong. Computer-Aided Control Systems Design: Practical Applications Using MATLAB and Simuling. Boca Raton: CRC Press, 2013.
- 2. Jaclyn E. Browning, Aleksander K. McMann. Computational Engineering Desing, Development and Applications. Nova Science Publishers, New York 2012.
- 3. Thalmann, D. Scientific Visualization and Graphics Simulation. Chichester, John Wiley and Sons, Inc., 1990.
- 4. Krynke M., Mielczarek K.: Applications of linear programming to optimize the costbenefit criterion in production processes. 12th International Conference Quality Production Improvement (QPI 2018), Zaborze, Polska (18 do 20 czerwca 2018 r.). Konferencja indeksowana w bazach: Scopus. MATEC Web of Conferences, Vol.183, 6s.

TEACHERS (NAME, SURNAME, E-MAIL ADDRESS)

- 1. dr inż. Marek Krynke, marek.krynke@wz.pcz.pl
- 2. dr inż. Krzysztof Knop, krzysztof.knop@wz.pcz.pl

MATRIX OF LEARNING OUTCOMES REALISATION

Learning outcome	Reference of given outcome to outcomes defined for whole program (PRK)	Cours e aims	Course content	Teaching tools	Ways of assessment
777.4		C1		1.0.2	F1 D1
EU 1	K_W01, K_W02, K_W03, K_W05,	C1	W1, W11,	1,2, 3	F1, P1
	K_U01, K_U02, K_U04, K_U05, K_U06,		W12, L1,		
	K_U07, K_U08, K_U09, K_U10, K_K01		L2		
EU 2	K_W05, K_W07, K_W09, K_U01, K_U02,	C2	W2-W10,	1,2, 3	F1, P1
	K_U03, K_U04, K_U05, K_U06, K_U07,		L3-L8,		
	K_U08, K_U09, K_U10				
EU 3	K_W02, K_W05, K_W08, K_W09,	C3	W6, L9,	1,2, 3	F1, P1
	K_U01, K_U02, K_U04, K_U05, K_U06,		L10,		
	K_U07, K_U09, K_U10				
EU 4	K_W01, K_W02, K_W08, K_W09,	C2, C3	W10,	1, 2, 3	F1, P1
	K_U01, K_U04, K_U07, K_U09, K_U10,		W11, L9,		
	K_K01, K_K04, K_K05		L10		

FORM OF ASSESSMENT - DETAILS

	grade 2	grade 3	grade 4	grade 5
EU 1	The student can not plan a simulation experiment.	The student is able to independently plan a simulation experiment, allow for minor errors, and be able to analyze the test design.	and independently plan a simulation experiment, can do analysis of the structure of the research object for the	Student can flawlessly and independently plan a simulation experiment, can do analysis of the structure of the research object for the needs of the simulation model.

3.

EU 2	The student can not perform the simulation of the operation of the production process.	Student can simulate the operation of the given production process, but can not propose modifications of the simulation model.	The student is able to simulate the operation of the given production process, he can propose modifications of the simulation model, using the instructor's suggestion.	Student can flawlessly and perform simulation of the operation of the given production process, he can himself propose modifications of the simulation model.
EU 3	The student can not independently evaluate the results, he can not use the instructor's suggestions.	Student is able to evaluate the obtained results, he has problems with the proposal modifications of the model, it is necessary to help the instructor.	The student is able to evaluate the results and propose modifications to the model.	Student can flawlessly and independently evaluate the obtained results and propose modifications of the model, determine the impact of applied changes on the accuracy of the results.
EU 4	The student can not solve any simple optimization problem.	The student can solve simple optimization problems of various production processes.	The student has the ability to use linear programming to optimize production processes. He can use the Octave package.	The student is able to perform optimization using the linear programming method. He knows the GNU Octave computing environment. He can accurately analyze the results.

ADDITIONAL USEFUL INFORMATION ABOUT THE COURSE

- 1. Information where presentation of classes, instruction, subjects of seminars can be found, etc. presented to students during first classes, if required by the formula classes are sent electronically to the e-mail addresses of individual dean groups.
- 2. Information about the place of classes Information can be found on the website of the Faculty of Management.
- 3. Information about the timing of classes (day of the week / time) Information can be found on the website of the Faculty of Management
- 4. Information about the consultation (time + place) Information can be found on the website of the Faculty of Management

Coordinator