COURSE GUIDE

Subject name	Assembly processes
Course of study	Quality and Production Management
The form of study	Full-time
Level of qualification	First
Year	III
Semester	VI
The implementing entity	Department of Production Engineering and Safety
The person responsible for preparing	dr inż. Marek Krynke
Profile	General academic
ECTS points	4

TYPE OF TEACHING – NUMBER OF HOURS PER SEMESTER

LECTURE	CLASS	LABORATORY	PROJECT	SEMINAR
15E	15		15	-

COURSE AIMS

C1. Basic knowledge of assembly processes.

C2. Practical use of various markings appearing in technical drawings.

ENTRY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Basic knowledge of technical drawing.
- 2. Knowledge of engineering design basics, problems of production management, production systems,

LEARNING OUTCOMES

EU1. Student uses concepts in the design of assembly systems.

- EU2. Student is able to mark the types of connections in technical drawings, identifies various markings in technical drawings.
- EU3. The student can identify the SMED system to shorten the time of replacement of assembly means.
- EU4. Student has the ability to synthesize and use knowledge from various learning areas in order to analyze and solve the problem of designing assembly systems.

COURSE CONTENT

Type of teaching – LECTURE		
W1. Basic concepts in assembly technology.	2	
W2. Mounting types.	1	
W3. Coupling methods and means of assembly.	1	
W4. Recording elements of the structure.	1	
W5. Determining the surface of the object.	1	
W6. Auxiliary and technological means of assembly.	1	
W7. Use of SMED to shorten the replacement time of mounting means.		
W8. Tolerance and parts fit in the drawings.	1	
W9. Types of connections and their representation in the drawings.	2	
W10. Principles of making assembly drawings.	1	
W11. Automatic assembly of products.	2	
W12. Safety of workers at assembly stations.	1	
Type of teaching - CLASS	Number	
	of hours	
C1. Concept and meaning of process and assembly.	1	

C2. Assembly methods.	1
C3. Analysis of technical drawings, types of drawings, dimensioning, tolerance of	
dimensions and shapes, determination of surface roughness and corrugation, and heat	2
treatment of coatings.	
C4. Reading drawings of machine parts connections, drawing of disconnection and	2
Inseparable connections.	2
C5. Examples of different mounting types.	2
C6. An overview of the use of SMED.	1
C7. Reading assembly drawings, tables on assembly drawings, dimensioning, and additional information in assembly drawings.	1
C8. Inseparable connections.	1
C9. plastically deformable joints.	1
C10. Analysis of the sequence of technological operations during assembly.	1
C11. Product design for assembly.	1
C12. Check the message.	1
Type of teaching - PROJECT	Number
	of hours
P1. Assigning topics to students, discussing the project framework.	1
P2. Compilation of lists of elements occurring in a given device, taking into account quantity, type of material, method of production-processing, manufacturer.	4
P3. Prepare the assembly procedure: specify the order of assembly, specify the number of	
fasteners, the type of fasteners, the fastening method, the tolerances used, the method of	<i>.</i>
orientation of the object with respect to the second, the method of fixing the	6
connections.	
P4. Analysis of technological means of assembly used in the developed process.	2
P5. Safety at the post.	1
P6. Presentation and evaluation of the project.	1

TEACHING TOOLS

- 1. Books and monographs.
- 2. Audiovisual presentation.

WAYS OF ASSESSMENT (F – FORMATIVE, P – SUMMATIVE) F1. Evaluation of the execution of partial projects.

- F2. Observation of student work on assessment.
- F3. Evaluation of the presentation of performed tasks.
- P1. Assessment the project.
- P2. Assessment test.
- P3. Written exam from lectures.

STUDENT WORKLOAD

Form of activity		Average number of hours for realization of the activity		
Contact hours with the teacher	Lecture	15	0.6	
Preparation for exam		13	0.52	1.2
Presence on the exam		2	0.08	
Contact hours with the teacher	Exercises	15	0.6	1
Preparation for the test of exercises		10	0.4	1
Contact hours with the teacher	Project	15	0.6	1 00
Preparation of your own project		12	0.48	1.00
Getting acquainted with the indicated literature		12	0.48	0.48
Presence on consultations		6	0.24	0.24
TOTAL NUMBER OF HOURS / ECTS POINTS FOR		100	4	
SUBJECT				

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

Basic resources

- 1. Savarese A.B.. Manufacturing Engineering. Nova Science Publishers, Nowy Jork 2011.
- 2. Lewandowski J., Walaszczyk A., Jałmużna I. Product and Packaging Tendencies for Development in Manufacturing. Wydaw. Politechniki Łódzkiej, 2012.
- 3. Jędrzejewski J. Manufacturing Systems Development Industry Expectations. Agenda Wydaw. Wrocławskiej Rady FSNT NOT, 2005.
- 4. Laughner V.H., Hargan A.D. Fastening and joining of metal parts.

Supplementary resources

- 1. Ioan Constantin Dima. Operational Management Systems of the Production Achieved in Flexible Manufacturing Cells. Technical University, Kosice, 2011.
- 2. Włosiński W. The Joining of a Advanced Materials. Oficyna Wydaw. Politechniki Warszawskiej, 1999.
- 3. Borkowski S., Ulewicz R. Systemy produkcyjne: Manufacturing Systems. Instytut Organizacji i Zarządzania w Przemyśle ORGMASZ, Warszawa 2009.
- 4. Krynke M., Knop K. Zastosowanie metody SMED do poprawy wskaźnika OEE. [in:] Ulewicz R., Woźny A. (eds.) Teoria i praktyka w zarządzaniu produkcją i bezpieczeństwem. Oficyna Wydawnicza Stowarzyszenia Menedżerów Jakości i Produkcji, Częstochowa 2017,pp. 95-106
- Borkowski S., Krynke M. Doskonalenie procesów w różnych branżach. [in:] Borkowski S., Krynke M. (eds.) Oficyna Wydawnicza Stowarzyszenia Menedżerów Jakości i Produkcji. Częstochowa 2015.

TEACHERS (NAME, SURNAME, E-MAIL ADDRESS)

dr hab. inż. Robert Ulewicz, prof. PCz, robert.ulewicz@wz.pcz.pl dr inż. Marek Krynke, marek.krynke@wz.pcz.pl dr inż. Magdalena Mazur, magdalena.mazur@wz.pcz.pl dr inż. Dorota Klimecka Tatar, dorota.klimecka-tatar@wz.pcz.pl dr inż. Krzysztof Knop, krzysztof.knop@wz.pcz.pl mgr inż. Krzysztof Mielczarek, krzysztof.mielczarek@wz.pcz.pl

MATRIX OF LEARNING OUTCOMES REALISATION

Learning outcome	Reference of given outcome to outcomes defined for whole program (PRK)	Course aims	Course content	Teaching tools	Ways of assessment
EU1	K_W01, K_W02, K_W03, K_W04, K_W05, K_W07, K_W10, K_U02, K_U04, K_U05, K_U06, K_U08, K_U09, K_K04	C1	W1-W3, C1, C2, P1	1, 2, 3	F1,F2, P1, P2, P3
EU2	K_W06, K_W09, K_U01, K_U02, K_U03, K_U06, K_U07, K_U09, K_U10, K_K02	C1, C2	W4, W5, W8, W9, W10, C3, C4, C7, P2	1, 2, 3	F1,F2, P1, P2, P3
EU3	K_W01, K_W04, K_W05, K_W07, K_W09, K_U01, K_U04, K_U05, K_U06, K_U07, K_U08, K_U09, K_U10, K_U11, K_K01, K_K04, K_K05	C1, C2	W2, W3, W7, W11, C2, C5, C6, C10, P2- P4	1, 2, 3	F1, F2, F3 P1, P2, P3
EU4	K_W01, K_W05, K_W06, K_W07, K_W08, K_W09, K_U01, K_U02, K_U05, K_U06, K_U07, K_U08, K_U09, K_U10, K_U11	C1, C2	W6, W11, W12, C5, C6, C8-C11, P3- P6	1, 2, 3	F1,F2, F3P1, P2, P3

FORM OF ASSESSMENT - DETAILS

	grade 2	grade 3	grade 4	grade 5
	Student does not use	Student is using the	Student uses the	Student is very familiar
EU1	the concepts of	chosen concepts of	concepts of assembly	with concepts of assembly
	designing assembly	assembly systems	systems design.	systems design and
	systems.	design.		express their opinion.
	Student can not mark	Student can only	Student can mark the	Student can compare and
	connection types in	mark certain types of	types of connections	mark the marks in
EU2	technical drawings.	connections in	in technical drawings,	technical drawings.
		technical drawings.	compare them and	Student knows the
			evaluate them.	tolerance markings.
	Student does not	Student defines the	Student knows the	Student knows the
	know the SMED	SMED method, but	SMED method well,	features of the SMED
	method.	can not apply it in	can identify assembly	method very well, knows
		real conditions.	systems used in this	its application and use. He
EU3			method, is able to	can design simple
			develop simple	assembly systems using
			assembly systems	SMED techniques.
			using SMED	
			techniques.	

	Student has no	Student con colve the	Student is able to use	Student is able to use the
	Student has no	Student can solve the	Student is able to use	Student is able to use the
	opportunity to	simplest problems of	the acquired	acquired knowledge to
	synthesize and use	assembly systems	knowledge to solve	correctly solve the
	knowledge from	design. The student	the problem of	problem of designing
	various fields of	knows how to use the	designing assembly	assembly systems and is
	education to analyze	sources indicated by	systems. The student	able to propose directions
FI14	and solve assembly	the instructor.	is looking for	of improvement. The
LU4	design problems.		additional sources of	student deepens his
			literature to broaden	knowledge by searching
			his knowledge.	for additional sources of
				literature, can compare the
				messages contained there,
				draw conclusions from
				them.

ADDITIONAL USEFUL INFORMATION ABOUT THE COURSE

- 1. Information where presentation of classes, instruction, subjects of seminars can be found, etc. presented to students during first classes, if required by the formula classes are sent electronically to the e-mail addresses of individual dean groups.
- 2. Information about the place of classes Information can be found on the website of the Faculty of Management.
- 3. Information about the timing of classes (day of the week / time) Information can be found on the website of the Faculty of Management.
- 4. Information about the consultation (time + place) Information can be found on the website of the Faculty of Management.