COURSE GUIDE

Subject name	Introduction to automation of production processes
Course of study	Quality and Production Management
The form of study	Full-time
Level of qualification	First
Year	III
Semester	V
The implementing entity	Department of Management Information Systems
The person responsible for preparing	dr hab. inż. Waldemar Jçdrzejczyk, Prof. PCz
Profile	General academic
ECTS points	4

TYPE OF TEACHING – NUMBER OF HOURS PER SEMESTER

LECTURE	CLASS	LABORATORY	PROJECT	SEMINAR
15		30	-	-

COURSE AIMS

- Cl. Acquainting with the theoretical basics in the field of automation as well as with issues of design, selection, commissioning and automation systems operation in the field of production engineering.
- C2. Presentation of elementary mathematical models used in automation and control theory.

ENTRY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Student is able to explain the essence of basic physical phenomena.
- 2. Student is able to describe electrical and electronic systems as well as explain the rules of their operation.
- 3. Student is able to present the internal and external environment of production companies and describe the cycle of production processes.

LEARNING OUTCOMES

EU1. Student is able to describe phenomena in the field of automation using the Laplace transforms.

- EU2. Student is able to present and describe basic problems in the areas of automation. He is able to adapt their principles and justify the reasons for their adaptation in diversified areas of technical sciences.
- EU3. Student is able to create models of basic automation terms. He can describe them by determining their time and frequency characteristics.
- EU4. Student is able to design and model control systems based on combinational logic circuits.

COURSE CONTENT

Type of teaching – LECTURE		
	of hours	
W1. Introduction to the subject. Presentation of basic concepts and terms related to the	1	
automation of production processes.	1	
W2. Laplace transform. Inverse transform. Properties of Laplace transforms.	1	
W3. Determination of Laplace transforms. Tables of Laplace transforms.	1	
W4,W5. Transfer function of automation basic terms (proportional term - P, integral term -	2	
I, derivative term - D, PI term, PD term, PID term).	2	
W6. The response determination of the automation basic terms to the given signals.	1	
W7,W8. Block Diagrams and Transfer Functions. Interconnections of systems: (a) series,	2	
(b) parallel and (c) feedback connections.	2	
W9,W10. Relay control systems.	2	
W11,W12. Digital control systems.	2	

W13,W14. Programmable Logic Controllers - construction and programming.	2	
W15. PLC languages: Ladder Diagram (LD), Instruction List (IL).		
Type of teaching – LABORATORY		
	of hours	
L1. Introductory classes — principles of performing laboratory exercises. Regulations of	2	
the laboratory.	2	
L2. Testing of oscilloscope and function generator.	2	
L3. Modeling of proportional term - time characteristics determination.	2	
L4. Modeling of proportional-integral term - time characteristics determination.	2	
L5,L6. Determination of frequency characteristics of automation basic terms.	4	
L7. Testing of combinational logic circuits.	2	
L8,L9. Designing of control logic circuits.	4	
L10,L11. Programming of control systems in Ladder Diagram (LD) language.	4	
L12-L14. Programming of control systems in Instruction List language.	6	
L15. Evaluation of reports.	2	

TEACHING TOOLS

- 1. Books and monographs.
- 2. Audiovisual presentation.
- 3. Laboratory devices.

WAYS OF ASSESSMENT (F – FORMATIVE, P – SUMMATIVE)

FI. Laboratory tasks - reports.

STUDENT WORKLOAD

Form of activity		Average number of hours for realization of the activity		
		[h]	ECTS	ECTS
Contact hours with the teacher	Lecture	15	0.6	0.6
Contact hours with the teacher	Laboratory	30	1.2	2.6
Preparation of the laboratory, preparation of reports		35	1.4	2.0
Getting acquainted with the indicated literature		15	0.6	0.6
Consultation		5	0.2	0.2
TOTAL NUMBER OF HOURS / ECTS POINTS FOR THE COURSE		100	2	1

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

Basic resources

- 1. Trevathan V.L. (ed.) Research Triangle Park. NC, USA, International Society of Automation.A Guide to the Automation Body of Knowledge, 2006.
- 2. Frohm J. Levels of Automation in Production Systems. Chalmers University of Technology, 2008.
- 3. Kandray D. Programmable Automation Technologies. Industrial Press, 2010.

Supplementary resources

- 1. Świć A., Lipski J. (eds.) Automation and Control in Industry. Wydaw. Politechniki Lubelskiej, Lublin, 2008.
- 2. Methods and Models in Automation and Robotics: 15th International Conference, 23-26 August 2010, Międzyzdroje, Poland.

TEACHERS (NAME, SURNAME, E-MAIL ADDRESS)

dr hab. inż. Waldemar Jędrzejczyk, prof. PCz, waldemar.jedrzejczyk@wz.pcz.pl

- dr inż. Dariusz Dudek, dariusz.dudek@wz.pcz.pl
- dr inż. Mariusz Pudło, mariusz.pudlo@wz.pcz.pl

dr inż. Adam Sokołowski, adam.sokolowski@wz.pcz.pl

dr inż. Artur Wrzalik, artur.wrzalik@wz.pcz.pl

Learning outcome	Reference of given outcome to outcomes defined for whole program (PRK)	Course aims	Course content	Teaching tools	Ways of assessment
EU1	K_W09, K_U01, K_U02, K_U04, K_U07, K_U10	Cl, C2	W1-W3	1, 2	F1
EU2	K_W09	Cl	W4-W8	1,2	F1
EU3	K_W09, K_U02, K_U07	C1, C2	L1-L6	3	F1
EU4	K_W01, K_W05, K_U08, K_U07, K_K01	C1	W9-W15, L7- L15	1, 2, 3	F1

MATRIX OF LEARNING OUTCOMES REALISATION

FORM OF ASSESSMENT - DETAILS

	grade 2	grade 3	grade 4	grade 5
	Student cannot	Student is able to	Student is able to	Student is able to
	describe phenomena	describe only chosen	describe a few	describe most
EU1	of automation fields	phenomena in the field	phenomena in the	phenomena in the field of
LUI	using the Laplace	of automation using few	field of automation	automation using the
	transforms.	Laplace transforms.	using the Laplace	Laplace transforms.
			transforms.	
	Student cannot	Student is able to present		Student is able to present
	present and describe	and describe few basic	present and describe	and describe most of the
	basic problems in the	problems in the areas of	few basic problems	basic problems in the
	areas of automation.	automation. He isn't	in the areas of	areas of automation. He
	He isn't able to adapt	able to adapt their	automation. He is	is able to adapt their
EU2	their principles and	principles and justify the	able to adapt their	principles and justify the
	5 5	reasons for their	principles and	reasons for their
	their adaptation in	adaptation in diversified	justify the reasons	adaptation in diversified
	diversified areas of	areas of technical	for their adaptation	areas of technical
	technical sciences.	sciences.	in few areas of	sciences.
			technical sciences.	
		Student is able to create	Student is able to	Student is able to create
	models of basic	models of only chosen	create models of the	models of the basic terms
	automation terms. He	terms of automation. He	basic terms of	of automation. He can
EU3	cannot describe them	can describe them by	automation. He can	describe them by
	by determining their	determining their only	describe them by	determining their time
	time and frequency	time characteristics.	determining their	and frequency
	characteristics.		time characteristics.	characteristics.
	e	Student is able to design	Student is able to	Student is able to design
	and model elementary	2	design and model	and model advanced
EU4		systems based on	elementary control	control systems based on
104	on combinational	combinational logic	systems based on	combinational logic
	logic circuits.	circuits.	combinational logic	circuits.
			circuits.	

ADDITIONAL USEFUL INFORMATION ABOUT THE COURSE

- 1. Information where presentation of classes, instruction, subjects of seminars can be found, etc. presented to students during first classes, if required by the formula classes are sent electronically to the e-mail addresses of individual dean groups.
- 2. Information about the place of classes Information can be found on the website of the Faculty of Management.
- 3. Information about the timing of classes (day of the week / time) Information can be found on the website of the Faculty of Management.
- 4. Information about the consultation (time + place) Information can be found on the website of the Faculty of Management.