COURSE GUIDE

Subject name	Design of logistics systems and processes
Course of study	Logistics
The form of study	Full-time
Level of qualification	Second
Year	Ι
Semester	2
The implementing entity	Department of Business Informatics and Ecosystems
The person responsible for preparing	dr Paula Bajdor
Profile	General academic
ECTS points	3

TYPE OF TEACHING – NUMBER OF HOURS PER SEMESTER

LECTURE	CLASS	LABORATORY	PROJECT	SEMINAR
15	15	-	-	-

COURSE AIMS

C1. Presentation of logistics systems and processes.

C2. Achievement of skills concerning design of processes with the usage of BPMN, UML 2.1 notation.

ENTRY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

The student possesses basic skills concerning computer operation.

The student is able to interpret data included in tables and graphs.

The student can use the Internet services: WWW, e-mail, etc.

LEARNING OUTCOMES

EU 1- The student possesses basic theoretical knowledge concerning the notion, identification and classification of logistics systems and processes.

EU 2- The student possesses knowledge and skills concerning design of logistics processes in BPMN and UML notation.

EU 3- The student is able to design in practice basic selected logistics processes using appropriate application such as e.g. DIA software.

COURSE CONTENT

Type of teaching – LECTURES		
		hours
L1	The notion and classification of logistics systems.	1
L2	Process approach in logistics.	1
L3	Identification and classification of logistic processes and methods used in its	1
	design, different approaches to designing a logistics system.	
L4	Implementation and maintenance of logistic systems.	1
L5	Analysis methods of logistic processes.	1
L6	Improvement of logistic processes. Total quality management and six sigma	1
	concept.	
L7	Logistics decision modeling.	1
L8	Tools for design of logistic processes on the basis of DIA application.	1
L9	Process performance.	1
L10 –	Characteristic of basic logistics processes – procurement, storage, production,	4
L13	transportation and communication	
L14	Models and process standardization	1
L15	The space in systems and logistics processes design	1
	Type of teaching – CLASSES	Number of

		hours
C1	Information system supporting the design of logistics processes	1
C2	Basic design principles	1
C3 – C4	The company's structure and departments design	2
C5	Creating a map of company's processes	1
C6	Identification of Logistics areas and processes	1
C7 – C8	Process diagram creation – flowcharts and BPMN notation	2
С9	Creating a process description sheet	1
C10 – C13	Logistics processes design – supply, storage, transport (distribution), production	4
C14 – C15	Logistics system design	2

TEACHING TOOLS

Coursebooks. Audiovisual equipment.

Laboratory instructions.

A computer with an access to the Internet and installed DIA application.

E-learning platform.

WAYS OF ASSESSMENT (F – FORMATIVE, P – SUMMATIVE)

F1 Presentation of assignments.

F2 Students' active participation in classes.

STUDENT WORKLOAD

Form of activity	Average number of hours for realization of the activity				
	[h]				
Contact hours with the teacher	30				
Preparation for classes	20				
Preparation for tests	20				
Consultations	5				
TOTAL NUMBER OF HOURS / ECTS POINTS FOR	75 / 3				
THE COURSE					

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

Basic resources

Kumar A., Business Process Management, New York, Routlegde, 2018.

Weske m., Business Process Management: Concepts, Languages, Archotectures, Berlin, Springer-Verlag, 2012.

Lenort R., Production Logistics Concepts and Systems: Potential for Use in Metallurgical Processing Companies, 2010.

Supplementary resources

Jeston J., Business Process Management: Practical Guidelines to Succesfully Implementations, London: Routledge 2014.

Dumas M., Fundamentals of Business Process Management, Heidelberg: Springer 2013.

Panagacos T., The ultimate Guide to Business Process Management: Everything You Need to Know and How to Apply it to Your Organization, Melbourne, 2012.

Lis T., Bajdor P., Sales Logistics as a Model Used by Companies Fulfilling Individual Customer's Needs, [in:] Challenges in Contemporary Management (ed.) LEMAŃSKA-MAJDZIK Anna, TOMSKI Piotr, Sekcja Wydawnictw Wydziału Zarządzania Politechniki Częstochowskiej, Częstochowa 2013.

Bolesnikov M., Popovic Stijacic M., Radisic M., Takaci A., Borocki J., Bolesnikov D., Bajdor P., Dzieńdziora J., Development of a Business Model by Introducing Sustainable and Tailor-Made Value Proposition for SME Clients, Sustainability, vol. 11, 2019.

MATRIX OF LEARNING OUTCOMES REALISATION								
Learning outcome	Reference of	Course aims	Course	Teaching	Ways of			
	given		content	tools	assessment			
	outcome to							
	outcomes							
	defined for							
	whole							
	program							
EU 1 The student	K_W03,	C1-C2	L1 - L15	1,2, 3,4	F1, F2, P1			
possesses basic theoretical	K_W04,							
knowledge concerning the	K_W05,							
notion, identification and	K_U01,							
classification of logistics	K_U03,							
systems and processes.	K_K05							
EU 2 The student	K_W02,	C1-C2	L1-L15, C1-	1,2, 3,4	F1, F2, P1			
possesses knowledge and	K_W03,		C8					
skills concerning design	K_W07,							
of logistics BPMN and	K_U01,							
UML notation processes.	K_U03,							
_	K_K05							
EU 3 -The student is able	K_W04,	C1-C2	C1- C8	1,2, 3,4	F1, F2, P1			
to design in practice basic	K_W06,							
selected logistics	K_W07,							
processes using	K_U03,							
appropriate. application	K_U05,							
such as e.g. DIA software.	K_K05.							

TEACHERS (NAME, SURNAME, E-MAIL ADDRESS) Paula Bajdor: paula.bajdor@pcz.pl

FORM OF ASSESSMENT - DETAILS

	grade 2	grade 3	grade 4	grade 5		
EU 1	The student does not know or understand any definitions concerning the problem of logistics systems and processes design.	The student possess basic knowledge concerning the notion, identification, classification of logistics systems and processes.	The student possess good knowledge concerning the notion, identification, classification of logistics systems and processes.	The student possess good knowledge concerning the notion, identification, classification of logistics systems and processes and is able to present selected practical examples of such a processes.		
EU 2	The student does not understand any basic BPMN or UML notation.	The student understands some basic BPMN or UML elements.	The student knows most of BPMN or UML notation elements.	The student knows very well BOMN or UML notation.		

EU 3	The student cannot design	The stu	ident i	s able to	The	student	is	able	The stu	dent is al	ble to
	any of presented during	design	one	logistic	to	design		two	design	three lo	gistic
	classes logistic processes.	process	with t	the usage	logis	stic proce	ess	with	process	with	the
		of DIA	applica	ation.	the	usage o	of	DIA	usage	of	DIA
					appl	ication.			applica	tion.	

ADDITIONAL USEFUL INFORMATION ABOUT THE COURSE

Information where presentation of classes, instruction, subjects of seminars can be found, etc. -

They are sent to the e-mail addresses of students

Information on the place where the classes take place -

Such information is placed at www site of The Faculty of Management

Information on the date of classes (day of the week/hour) -

Such an information can be found at www site of the Faculty of Management

Information on consultation hours (hours + place) -

Such information is conveyed to students at the first class.