SYLLABUS OF A MODULE

Polish name of a module	Termodynamika	
English name of a module	Thermodynamics	
ISCED classification - Code	0715	
ISCED classification - Field of study	Mechanics and metal trades	
Languages of instruction	English	
Level of qualification:	1 – BSc (EQF 6)	
Number of ECTS credit points	6	
Examination:	EW – exam written	

Number of hours per semester:

Lecture	Exercises	Laboratory	Seminar	E-learning	Project
30 E	30	15	0	0	0

MODULE DESCRIPTION

MODULE OBJECTIVES

- O1. Understanding the fundamental energy conversion processes.
- O2. Understanding and ability to use of the first and second law of thermodynamics.
- O3.Understanding the pure substance properties and their mixtures.

O4.Understanding the thermodynamic cycles and cycles efficiency.

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Knowledge on the mathematical analysis
- 2. Capability to use various information sources, including technical manuals.
- 3. Capability of individual work.
- 4. Data analysis and presentation of results

LEARNING OUTCOMES

- LO 1 Knowledge on fundamental energy conversion processes and thermodynamics laws
- LO 2 Knowledge on thermodynamic cycles and their efficiencies
- LO 3 Capability of thermodynamic cycles efficiency calculations

MODULE CONTENT

Type of classes – lecture	Number of hours	
L 1-2 - Basic concepts: nature of thermodynamics, system and control volumes, continuum concept, state and equilibrium, processes and cycles, temperature and zero th law of thermodynamics		
L 3-6 - Energy, energy transfer, general energy analysis: internal energy, heat transfer, work, first law of thermodynamics, energy conversion efficiency		
L 7-8 - Properties of pure substances: concept of a pure substance, phase-change processes, ideal gas, ideal gas equation of state, application of other state equations		
L 9-10 - Energy analysis of closed systems	2	
L 11-12 - Mass and energy analysis of control volume	2	
L 13-14 - Second law of Thermodynamics	2	
L 13-16 - Entropy and Exergy analysis	4	
L 17-18 - Maxwell relations, Gibbs and Helmholtz functions	2	
L 19-22 - Gas Power cycles	4	
L 23-26 - Gas mixtures, gas and vapour mixtures, Rankine cycle	4	
L 27-30 - Thermodynamics of chemical reactions: phase and chemical equilibrium	4	
Sum	30	
Type of classes- tutorials	Number of hours	
T 1-2 - Basic concepts	2	
T 3-6 - Energy, energy transfer, general energy analysis: internal energy, heat transfer, work, first law of thermodynamics, energy conversion efficiency	4	
T 7-10 - Properties of pure substances: concept of a pure substance, phase-change processes, ideal gas, ideal gas equation of state, application of other state equations		
T 11 -14 - Energy analysis of closed systems and Mass and energy analysis of control volume		
T 15-18 - Second law of Thermodynamics, Entropy and exergy analysis	4	
T 19-22 - Gas Power cycles		
T 23-26 - Gas mixtures, gas and vapor mixtures		
T 27-30 - Thermodynamics of chemical reactions		
Sum	30	
Type of classes- laboratory	Number of hours	
L 1-2 Measurement precision	2	
T 3-4 –Temperature measurements	2	
T 5-6 – Pressure measurements		
T 7 -8 – Mass flow rate measurements	2	
T 9-10 – Specific heat capacity	2	
T 11-12 – Humidity measurements	2	
T 13-24 – Experimental determination of overall heat transfer coefficient	2	
T 15 – Density measurements	1	
Sum	15	

TEACHING TOOLS

1 - Lecture notes
2 – Literature
3 - Thermodynamics laboratory

WAYS OF ASSESSMENT (F-FORMATIVE, S-SUMMATIVE

F1. - assessment of preparation for laboratory exercises

F2. - assessment of the ability to apply the acquired knowledge while doing the exercises

F3. - evaluation of reports on the implementation of exercises covered by the curriculum

F4. - assessment of activity during classes

S1. - assessment of the ability to solve the problems posed and the manner of presentation obtained results - pass mark *

S2. - assessment of mastery of the teaching material being the subject of the lecture - exam

*) in order to receive a credit for the module, the student is obliged to attain a passing grade in all laboratory classes as well as in achievement tests.

STUDENT'S WORKLOAD

L.p.	Forms of activity	Average number of hours required for realization of activity			
1	1. Contact hours with teacher				
1.1	Lectures	30			
1.2	Tutorials	30			
1.3	Laboratory	15			
1.4	Seminar	0			
1.5	Project	0			
1.6	Consulting teacher during their duty hours	5			
1.7	Examination	3			
	Total number of contact hours with teacher:	83			
2. Student's individual work					
2.1	Preparation for tutorials and tests	20			
2.2	Preparation for laboratory exercises, writing reports on laboratories	15			
2.3	Preparation of project	0			
2.4	Preparation for final lecture assessment	0			
2.5	Preparation for examination	22			
2.6	Individual study of literature	10			
	Total number of hours of student's individual work:	67			
	Overall student's workload:	150			
Overa	ll number of ECTS credits for the module	6 ECTS			
Numb superv	er of ECTS points that student receives in classes requiring teacher's vision:	3.32 ECTS			
	er of ECTS credits acquired during practical classes including laboratory ses and projects:	2.40 ECTS			

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

- 1. Shavit A., Gutfinger C., Thermodynamics: From Concepts to Applications, CRC Press, 2008
- 2. Engel T., Reid P., Thermodynamics, Statistical Thermodynamics, & Kinetics, Benjamin Cummings, 2006
- 3. Janna W.S., Engineering Heat Transfer, Third Edition, CRC Press, 2009
- 4. Cengel, Y.A., Boles M.A., Thermodynamics, an engineering approach, 5th ed., New York, McGraw-Hill, 2006
- 5. Moran M.J., Shapiro H.D.: Fundamentals of engineering thermodynamics, John Wiley & Sons, 2000
- 6. R.E. Sonntag, C. Borgnakke, G.J. Van Wylen, Fundamentals of Thermodynamics, 6th Edition, John Wiley & Sons, 2003
- 7. Shavit A., Gutfinger C., Thermodynamics: From Concepts to Applications, CRC Press, 2008
- 8. Engel T., Reid P., Thermodynamics, Statistical Thermodynamics, & Kinetics, Benjamin Cummings, 2006

MODULE COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

prof. dr hab. inż. Andrzej Bogusławski, Katedra Maszyn Cieplnych, abogus@imc.pcz. pl