SYLLABUS OF A MODULE (№ E7101)

Polish name of a module	Komputerowe wspomaganie prac inżynierskich
English name of a module	Computer Aided Engineering
ISCED classification - Code	0715
ISCED classification - Field of study	Mechanics and metal trades
Languages of instruction	English
Level of qualification:	BSc (EQF 6)
Number of ECTS credit points	4
Examination:	A - assignment

Number of hours per semester:

Lecture	Exercises	Laboratory	Seminar	E-learning	Project
15	0	30	0	0	0

MODULE DESCRIPTION

Module objectives

- O1. Expanding knowledge of 3D modeling.
- O2. To acquire capabilities to conduct strength analyzes using the finite element method in relation to the selected CAE system.

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Fundamentals of mechanics, mechanism and machine theory, strength of materials.
- 2. Ability to read and apply technical drawings.
- 3. Ability to build 3D models in CAD programs.
- 4. Capability of using source literature.
- 5. Capability of individual work and collaboration in a group.
- 6. Data analysis and presentation of results.

LEARNING OUTCOMES

- LO 1 Knowledge on parameterization and optimization of CAD models.
- LO 2 Knowledge on finite element method in relation to the selected CAE system.
- LO 3 Ability to construct the parameterized solid models and to conduct strength analyzes in selected CAE system.

MODULE CONTENT

Type of classes – lecture		
Lec 1-3 - Parameterization of CAD models. Global variables, equations, part		
configurations, configurations in assemblies.		
Lec 4,5 - Stress analysis. The analysis process.		
Lec 6 - Stress analysis. The influence of mesh density of displacement and stress results.		
Lec 7 - Stress analysis. Methods to present FEA results.	1	
Lec 8 - Stress analysis. Modeling and discretization errors.	1	
Lec 9 - Stress analysis. Mesh controls.	1	
Lec 10 - Stress analysis. Stress concentrations.	1	
Lec 11,12 - Stress analysis. Structural analyses of simple assemblies.	2	
Lec 13 - Stress analysis. Contact conditions.	1	
Lec 14,15 - Optimization of models by using a design study.	2	
Sum	15	
Toma of domain lob out to me		
Type of classes– laboratory.	of hours	
Lab 1 - Use global variable. Create equations.	2	
Lab 2 - Use configurations to represent different versions of a part within a single file.		
Suppress and unsuppress features.	2	
Lab 3 - Change dimension values by configuration. Suppress features by configuration.		
Lab 4 - Stress analysis. Preprocessing. Meshing. Processing. Post-processing.		
Lab 5-7 - Stress analysis. Execute a linear static analysis using solid elements.	6	
Lab 8 - Stress analysis. The influence of mesh density on displacement and stress results. Employ various methods to present FEA results.		
Lab 9 - Stress analysis. Use mesh controls. Understand stress concentrations. Extract reaction forces.	2	
Lab 10 - Stress analysis. Compatible and incompatible meshes.		
Lab 11 - Stress analysis. Contact analysis.		
Lab 12,13 - Stress analysis. Symmetrical and free self-equilibrated assemblies.		
Lab 14 - Design study to analyse trends when specific parameters are varied.	2	
Lab 15 - Find optimum value of some design parameters.	2	
Sum	30	

TEACHING TOOLS

1. - Power Point presentations, lecture notes, sample problems.

2. - Laboratory tutorials.

3. - Computer lab: CATIA, SolidWorks, Inventor - educational license available in the laboratory.

WAYS OF ASSESSMENT ($\mathbf{F}-\mathbf{FORMATIVE}, \mathbf{S}-\mathbf{SUMMATIVE}$

F1. - assessment of preparation for laboratory exercises

F2. - assessment of the ability to apply the acquired knowledge while doing the exercises

F3. - evaluation of reports on the implementation of exercises covered by the curriculum

F4. - assessment of activity during classes

S1. - assessment of the ability to solve the problems posed and the manner of presentation obtained results - pass mark *

S2. - assessment of mastery of the teaching material being the subject of the lecture - exam

*) in order to receive a credit for the module, the student is obliged to attain a passing grade in all laboratory classes as well as in achievement tests.

STUDENT'S WORKLOAD

L.p.	Forms of activity	Average number of hours required for realization of activity		
1. Contact hours with teacher				
1.1	Lectures	15		
1.2	Tutorials	0		
1.3	Laboratory	30		
1.4	Seminar	0		
1.5	Project	0		
1.6	Consulting teacher during their duty hours	5		
1.7	Examination	0		
	Total number of contact hours with teacher:	50		
2	. Student's individual work			
2.1	Preparation for tutorials and tests	0		
2.2	Preparation for laboratory exercises, writing reports on laboratories	30		
2.3	Preparation of project	0		
2.4	Preparation for final lecture assessment	10		
2.5	Preparation for examination	0		
2.6	Individual study of literature	10		
	Total number of hours of student's individual work:	50		
	Overall student's workload:	100		
Overall number of ECTS credits for the module		4 ECTS		
Number of ECTS points that student receives in classes requiring teacher's supervision:		2 ECTS		
Number of ECTS credits acquired during practical classes including laboratory exercises and projects:		2.4 ECTS		

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

- 1. Akin J.E.: Finite Element. Analysis Concepts. Via SolidWorks, World Scientific, 2010.
- 2. Gill P.E.: Practical optimization. Academic Press, New York, 2000.
- 3. Koh J.: CATIA V5 Design Fundamentals: A Step by Step Guide, CreateSpace Independent Publishing Platform, 2012.
- 4. Lombard M.: Solidworks 2011 Parts Bible, John Wiley & Sons, 2011.
- 5. Lombard M.: Solidworks Assemblies Bible, John Wiley & Sons, 2011.
- Maguire D.: Engineering Drawing from First Principles. Using AutoCAD, Butterworth-Heinemann, 1998.
 Silva V. D.: Mechanics and Strength of Materials, 2006.
- 8. Ticko S.: CATIA V5-6R2014 for Designers, Cadcim Technologies, 2015.
- 9. Waguespack C.: Mastering Autodesk Inventor 2012 and Autodesk Inventor LT 2012, Wiley Publishing Inc., Indianapolis, 2011.
- 10. Woyand H.-B.: FEM mit CATIA V5, J. Schlembach Fachverlag Wilburgstetten, 2009.
- 11. Zeid I.: Mastering SolidWorks, Pearson Peachpit, 2014.

MODULE COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

Dr hab. inż. Dawid Cekus prof. PCz - <u>cekus@imipkm.pcz.pl</u>