SYLLABUS OF A MODULE (№ E7100)

Polish name of a module	Mechanika płynów	
English name of a module	Fluid mechanics	
ISCED classification - Code	0710	
ISCED classification - Field of study	Engineering & engineering trades	
Languages of instruction	English	
Level of qualification:	1 – BSc (EQF 6)	
Number of ECTS credit points	6	
Examination:	EW – exam written	

Number of hours per semester:

Lecture	Exercises	Laboratory	Seminar	E-learning	Project
30E	30	15	0	0	0

MODULE DESCRIPTION

MODULE OBJECTIVES

- O1. Understanding the fundamental properties of fluids, properties of pressure as a scalar quantity, hydrostatic pressure and hydrostatic forces
- O2. Understanding various methods of fluid motion description, understanding basic properties of fluid motion for ideal and viscous fluids
- O3. Ability to use the one dimensional theory of fluid motion for ideal and viscous fluids to solve practical problems

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Knowledge on the mathematical analysis and physics
- 2. Knowledge of the basic course of mechanics
- 3. Ability of individual work

LEARNING OUTCOMES

- LO 1 theoretical and practical knowledge in statics of fluid mechanics
- LO 2 theoretical and practical knowledge in kinematics and dynamics of perfect fluids
- LO 3 theoretical and practical knowledge in kinematics and dynamics of real fluids

MODULE CONTENT

Type of classes – lecture	Number of hours
Lec 1-4 - Basic concepts: solid body versus fluid mechanics, fluid as a continuum, basic physical properties of fluids, action of normal and shear forces upon the fluid element, viscosity as a physical property of fluids and the property of fluid motion.	4
Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field.	2
Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law.	4
Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies.	6
Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N–S equations and their solution methods.	4
Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes.	4
Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid.	2
Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network.	4
Sum	30
Type of classes – tutorial	Number of hours
T 1-4 - Basic physical properties of fluids.	4
T 5-8 - Equilibrium of steady fluid.	4
T 9-10 - Pascal's law	2
T 11-12 - Hydrostatic forces acting on plane arbitrarily oriented surfaces	2
T 13-16 - Hydrostatic forces acting on curved surfaces	4
T 17-19 - Flow kinematics	3
T 20-23 - Bernoulli equation for ideal fluids	4
T 24-26 - Linear momentum equations for 1D flow of ideal fluid	3
T 27-30 - Bernoulli equation for viscous fluids	4
Sum	30
Type of classes – laboratory	Number of hours
Lab 1 - Measurements of basic flow parameters by pressure tubes and taps	1
Lab 2 - Flow around the circular cylinder	1
Lab 3-4 - Drag coefficient of streamlined and bluff bodies	2
Lab 5 - Determination of the volumetric-rate correction factor (Coriolis coefficient)	1
Lab 6 - Determination of axisymmetric diffuser efficiency	1
Lab 7 - Characteristics of the nozzle flow fed from the open tank	1
Lab 8 - Determination of a metacentric height for floating bodies	1
Lab 9 - Determination of hydrostatic force and its application point for arbitrarily oriented flat surfaces	1
Lab 10 - Verification of Stevin's theorem	1
Lab 11 - Determination of the critical Reynolds number for circular pipe flow	1
Lab 12-13 - Energy losses in the flow through a pipeline	2
Lab 14-15 - Measurement of flow velocity in a pipeline, determination of hydrostatic	2
pressure, verification of Boyle – Marriot law Sum	15

TEACHING TOOLS

1. - Lecture with Power Point presentation, lecture notes, sample problems

2. - Tutorials with Power Point presentation, tutorial book

3. - Experimental rigs and measuring equipment

4. - Laboratory tutorials

WAYS OF ASSESSMENT (F – FORMATIVE, S – SUMMATIVE)

F1. - assessment of preparation for laboratory exercises

F2. - assessment of the ability to apply the acquired knowledge while doing the exercises

F3. - evaluation of reports on the implementation of exercises covered by the curriculum

F4. - assessment of activity during classes

S1. - assessment of the ability to solve the problems posed and the manner of presentation obtained results - pass mark *

S2. - assessment of mastery of the teaching material being the subject of the lecture - exam

*) in order to receive a credit for the module, the student is obliged to attain a passing grade in all laboratory classes as well as in achievement tests.

STUDENT'S WORKLOAD

No	Forms of activity	Average number of hours required for realization of activity			
1	1. Contact hours with teacher				
1.1	Lectures	30			
1.2	Tutorials	30			
1.3	Laboratory	15			
1.4	Seminar	0			
1.5	Project	0			
1.6	Consulting teacher during their duty hours	5			
1.7	Examination	3			
	Total number of contact hours with teacher:	83			
2. Student's individual work					
2.1	Preparation for tutorials and tests	15			
2.2	Preparation for laboratory exercises, writing reports on laboratories	20			
2.3	Preparation of project	0			
2.4	Preparation for final lecture assessment	0			
2.5	Preparation for examination	20			
2.6	Individual study of literature	12			
	Total number of hours of student's individual work:	67			
	Overall student's workload:	150			
Overall number of ECTS credits for the module		6			
Number of ECTS points that student receives in classes requiring teacher's supervision:		3.32 ECTS			
Number of ECTS credits acquired during practical classes including laboratory exercises and projects:		2.60 ECTS			

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

- 1. Drobniak S.: Fluid Mechanics An Introduction, TEMPUS PROJECT, TUCz publication, 2002.
- 2. E.J. Shaughnessy, I.M. Katz, J.P. Schaffer, Introduction to Fluid Mechanics, Oxford University Press, 2005
- 3. F.M. White, Fluid Mechanics, McGraw-Hill, 2003
- 4. J.B. Evett, C. Liu, Fundamentals of Fluid Mechanics, McGraw-Hill, 1987
- 5. Durst F.: Fluid Mechanics. An introduction to the theory of fluid flows. Springer-Verlag, Berlin, 2008

MODULE COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

dr Dariusz Asendrych - <u>darek@imc.pcz.czest.pl</u>