COURSE GUIDE

Subject name	Physics II
Course of study	Quality and Production Management
The form of study	Full-time
Level of qualification	First
Year	I
<u>Semester</u>	II
The implementing entity	Department of Physics, Faculty of Production Engineering and Materials Technology
The person responsible for preparing	Dr inż. Marcin Jarosik
<u>Profile</u>	General academic
Course type	Basic
ECTS points	3

TYPE OF TEACHNING – NUMBER OF HOURS PER SEMESTER

LACTURE	CLASS	LABORATORY	PROJECT	SEMINAR
15		15		

COURSE AIMS

- C1. Expanding the knowledge and complementing of physics phenomena and the laws governing these phenomena.
- C2. Understanding of the laws of physics in the word of modern technology.
- C3. Mastering and complementing the skills of measuring and analyzing physical phenomena and solving technological problems based on the laws of physics.

ENTRY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Basic knowledge of physics laws.
- 2. Knowledge of the mathematics at the level of secondary school.
- 3. Ability to draw up written reports of laboratory experiments.
- 4 Ability to work in a group.

LEARNING OUTCOMES

- EU 1- student has knowledge of the achievements and prospects of modern physics in the field of optics, electricity and magnetism.
- EU 2- student acquired knowledge of physical phenomena and the laws governing them in the field of optics, electricity and magnetism.
- EU 3- student has the ability to collect, analyze and elaborate measurement data.
- EU 4- student is able to interpret the obtained results and present them in a report.

COURSE CONTENT

Type of teaching – LECTURE	Number of
	hours
W 1 Diffraction and interference	1
W 2 Spectroscopy. Light pipe	1
W 3 Coherence. Generation of coherent light - LASER	1
W 4 Polarization of light. Birefringence	1
W 5 Twisting of the plane of polarization and its analytical relevance	1
W 6 Electrostatics - electric charge, Coulomb's law	1
W 7 The electric field. The electric potential	1
W 8 The electric current	1
W 9 Conductors and insulators	1
W 10 Magnetic forces associated with the current flow	1
W 11 Magnetic Field	1
W 12 Movement of the conductor in a magnetic field	1
W 13, 14 Magnetic properties of the materials	1
W 15 Achievements of Polish physicists in recent years	1
Type of teaching – LABORATORY	Number of
	hours
L 1 Introduction to laboratory classes; choosing of the experiments to carry out by	1
each student; calculation of measuring error.	
L 2-L 7 Students carry out 6 experiments selected from dozens which are placed in the	12
following laboratories of the Institute of Physics:	
- laboratory of mechanics and heat;	
- laboratory of electricity and magnetism;	
- laboratory of optics.	
L 8 Getting a pass/fail of the laboratory classes; the possibility to make an experiment	2
for student who was absent for justified reasons	

TEACHNING TOOLS

- 1. Lecture with the use of audiovisual media.
- 2. Sets for demonstrations of physics experiments.
- 3. Sets of laboratory experiments which are placed at Institute of Physics.
- 4 Instructions (manuals) for laboratory experiments.

WAYS OF ASSESSMENT (F – FORMATIVE, P – SUMMATIVE)

- F1. Assessment of individual preparation to laboratory classes.
- F1. Assessment of final report of individual laboratory experiments.
- P1. Averaged assessment of preparation for laboratory classes and for the final reports of each experiment carried out.

STUDENT WORKLOAD

Form of activity		Average number of hours for realization of the activity		
		[h]	ECTS	ECTS
Contact hours with the teacher	LECTURE	15	0.6	1.0
Preparing to classes		10	0.4	
Contact hours with the teacher	Laboratory	15	0.6	1.2
Preparing to Laboratory		15	0.6	
Getting Acquainted with the indicated literature		15	0.6	0.6
Consultation		5	0.2	0.2
TOTAL NUMBER OF HOURS / ECTS CREDITS		75		3
FOR THE COURSE				

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

Basic resources:

- 1. Wybourne B. "Physics as a Journey", Wydaw. Uniwersytetu Mikołaja Kopernika, Toruń, 1998.
- 2. Physics: For Scientists and Engineers 6TH EDITION by Raymond A. Serway and John W. Jr. Jewett. Brooks/Cole Publishing Co.,2004.
- 3. S.J. Ling, J. Sanny, W. Moebs, University Physics Vol.1-2, OpenStax, Rice University 2016. http://cnx.org/content/col12031/1.10
- 4. J. Lech: Opracowanie wyników pomiarów w pierwszej pracowni fizycznej, Wyd. Polit. Czestochow., 1997.

Supplementary resources:

- Jarosik M, Szczęśniak R, Durajski A, Kalaga J, Leoński W.: "Influence of External Extrusion on Stability of Hydrogen Molecule and its Chaotic Behavior", Chaos 28, 013126 (2018); https://doi.org/10.1063/1.5008986
- I. A. Wrona, M. W. Jarosik, R. Szczęśniak, K. A. Szewczyk, M. K. Stala, W. Leoński, "Interaction of the hydrogen molecule with the environment: stability of the system" arXiv:1902.10520 2019, https://arxiv.org/pdf/1902.10520
- 3. Sodolski H.: "Selected Problems in Physics", Wydaw. Politechniki Gdańskiej, Gdańsk, 1996.
- 4. Zubek M., "Experiments in Physics: First Laboratory for Students", Wydaw. Politechniki Gdańskiej, 1996.
- 5. Dziliński K., Wysłocki J., "Solid State Physics in Modern Materials Research: PHYSICS 2010", Wydaw. Wydz. Inżynierii Procesowej, Materiałowej i Fizyki Stosowanej PCz, 2010.

TEACHERS (NAME, SURNAME, E-MAIL, ADDRESS)

1. Employees of Institute of Physics in Częstochowa University of Technology

MATRIX OF LEARNING OUTCOMES REALISATION

Learning	Reference of given outcome	Course	Course	Teachning	Ways of
outcome	to outcomes defined for	aims	content	tools	assessment
	whole program (PRK)				
EU1	K_W01	C1	W1, W6-W8,	1, 2	F1, P1
			W10-W12		
EU2	K_W01	C2	W2-W5, W9,	1, 2	F1, P1
			W13-W15		
EU3	K_U01, K_U02, K_U04,	C3	L1-L8	3, 4	F1, P1
	K_U07, K_U08, K_U09,				
	K_U10				
EU4	K_U04, K_U05, K_U09	C3	L1-L8	3, 4	F2, P1

FORM OF ASSESSMENT - DETAILS

	grade 2	grade 3	grade 4	grade 5
EU1	Student does not possess knowledge of	Student possesses poor knowledge of the	Student possesses systematic knowledge	student possesses systematic and wide knowledge of the
	the achievements and prospects of modern	achievements and prospects of modern	of the achievements and prospects of	achievements and prospects of modern physics in the field of
	physics in the field of	physics in the field of	modern physics in the	optics, electricity and magnetism
	optics, electricity and magnetism	optics, electricity and magnetism	field of optics, electricity and magnetism	
EU2	Student did not acquire knowledge of physical phenomena and the laws governing them in the field of optics, electricity and magnetism	Student acquired partial knowledge of physical phenomena and the laws governing them in the field of optics, electricity and	Student acquired knowledge of physical phenomena and the laws governing them in the field of optics, electricity and magnetism	Student acquired advanced knowledge of physical phenomena and the laws governing them in the field of optics, electricity and magnetism
EU3	Student has not the ability to collect, analyze and elaborate measurement data	magnetism Student has the limited ability to collect, analyze and elaborate measurement data	Student has the fair ability to collect, analyze and elaborate measurement data	Student has the advanced ability to collect, analyze and elaborate measurement data
EU4	Student is unable to interpret the obtained results and present them in a report	Student in some cases is able to solve interpret the obtained results and present them in a report	Student in most cases is able to interpret the obtained results and present them in a report	Student in all cases is able to interpret the obtained results and present them in a report

ADDITIONAL USEFUL INFORMATION ABOUT THE COURSE

- 1. Information where presentation of classes, instruction, subjects of seminars can be found, etc. presented to students during first classes, if required by the formula classes are sent electronically to the e-mail addresses of individual dean groups.
- 2. Information about the place of classes Information can be found on the website of the Faculty of Management.
- 3. Information about the timing of classes (day of the week / time) Information can be found on the website of the Faculty of Management
- 4. Information about the consultation (time + place) Information can be found on the website of the Faculty of Production Engineering and Materials Technology

.....

Politechnika Częstochowska, Wydział Zarządzania

Coordinator