COURSE GUIDE

Subject name	Materials in production processes
Course of study	Quality Management and Production
The form of study	Full-time
Level of qualification	First
Year	I
Semester	II
The implementing entity	Department of Production Engineering and Safety
The person responsible for preparing	Dr inż. Dorota Klimecka-Tatar
<u>Profile</u>	General academic
Course type	principal
ECTS points	4

TEACHNING METHODS – NUMBER OF HOURS PER SEMESTER

LECTURE	CLASS	LABORATORY	PROJECT	SEMINAR
15E	15	15		

COURSE AIMS

- C1. Knowledge and ability to identify basic groups of engineering materials.
- C2. Knowledge and characteristics of materials testing methods
- C3. Understanding the possibilities of materials selection in manufacturing processes.

ENTRY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1) Student demonstrates knowledge of basic physical and chemical laws.
- 2) Student can make mathematical calculations.

LEARNING OUTCOMES

- EU 1 The student is able to divide the basic groups of engineering materials.
- EU 2 Student can characterize groups of metallic, polymer, ceramic and composite materials.

Discuss their physical and mechanical properties.

- EU 3 Student knows basic research methods in determining properties of engineering materials.
- EU 4 Student is able to characterize the physical and mechanical properties of metallic, polymeric ceramic and composite materials.

COURSE CONTENT

Type of teaching – LECTURES	Number of hours
W 1 - Introduction to the subject. Presentation of basic concepts and terms related to material science.	1
W 2 - Presentation of the basic classification of engineering materials from the point of view of their construction and chemical composition.	1
W 3 - Presentation of basic information on metallic materials, metal processing techniques and their alloys.	1
W 4 - Overview of phase systems of metal alloys: iron alloys.	2
W 5 - Characteristics of polymer materials: classification of polymers, methods of polymer production.	2
W 6 - Characteristics of ceramic materials: classification of ceramic materials, technologies in the manufacturing of ceramics.	2
W 7 - Characteristics of composite materials: classification in terms of matrix material and applied filler / reinforcement.	2
W 8 - Introduction to identification and evaluation of microstructure and microstructure of engineering materials.	1
W 9 - Introduction to basic methods of measurement of engineering parameters.	2
W 10 - Introduction to materials selection methods - Ashby's maps.	1
Type of teaching – Classes	Number of hours
C 1 - Introduction to the subject - discuss the rules of the classes, discuss assessment methods. Introduce basic concepts in material science.	2
C 2 - Introduction and discussion of construction of engineering materials. Determination of the influence of chemical bond types in materials of all groups on material properties.	2
C 3 - Introduction to crystallography including basic crystallographic systems.	2
C 4 - Two-component phase equilibria (methods of graphical design, information read from graphs, identification of reactions)	2
C 5 - Introduction to the basic calculations regarding the mechanical properties of materials.	4
C 6 - Selection of engineering materials based on Ashby's maps.	2
C 7 - Test	1
Type of teaching – Laboratory	Number of hours

L 1 - Introduction to the subject - discuss the rules of the classes, discuss assessment methods.	2
Introduce basic concepts in material science.	
L 2 - Methods for the identification and classification of materials based on physical	2
properties, methods of determining the density of materials.	
L 3 - Microscopic examination. Acquisition of single- and multi-phase alloys (including Fe-C	4
alloys).	
L 4 - Determination of particle size in single-phase materials, identification of the volume	2
fraction of individual components based on stereological calculations.	
L 5 - Introduction to the basic methods of measuring the mechanical properties (hardness for	4
different material groups)	
7 - Test	1

TEACHNING TOOLS

- 1. Manuals and scripts
- 2. Audiovisual equipment
- 3. Analytical weight
- 4. Optical microscopes metallographic
- 5. Hardness Testers

WAYS OF ASSESSMENT (F – FORMATIVE, P – SUMMATIVE)

- F1. Evaluation of the implementation tasks in the auditorium classes.
- F2. Evaluation of the implementation tasks in the laboratory.
- P1. Written exam.

STUDENT WORKLOAD

Form of activity		Average number of hours for realization of the activity		
		[h]	ECTS	ECTS
Contact hours with the teacher	Lecture	15	0.6	1.32
Preparation for exam	•	15	0.6	
Exam		3	0.12	
Contact hours with the teacher	Class	15	0.6	1.2
Preparation for auditorium class		15	0.6	
Contact hours with the teacher	Laboratory	15	0,6	1.2
Preparation for laboratory		15	0.6]
Consultation		7	0.28	0.28
TOTAL NUMBER OF HOURS / ECTS POINTS FOR THE COURSE		100	4	1

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

Basi	c resources:
1.	Mike Ashby, Hugh Shercliff, David Cebon, Materials: Engineering, Science, Processing
	and Design, Amsterdam; Oxford: Butterworth-Heinemann / Elsevier, 2014.
2.	William D. Callister, Jr., David G. Rethwisch, Fundamentals of Materials Science and
	Engineering: an Integrated Approach: International Student Version, Singapore: John
	Wiley and Sons, 2016.
3.	Donald R. Askeland, Wendelin J. Wright; SI Edition prepared by D. K. Bhattacharya, Raj
	P. Chhabra, The Science and Engineering of Materials: SI Edition, Boston: Cengage
	Learning, 2016.
Sup	plementary resources:
1.	Stanisław Borkowski, Piotr Sygut. Improvement Processes in Materials Engineering and
	Commodity Science: Monography, Sci. Eds.: Zagreb, Croatian Quality Managers Society,

	2015.
2.	Robert D. Cook, Warren C. Young, Advanced Mechanics of Materials. New York:
	Macmillan Publishing Company, 1985.
3.	Haim Abramovich, Intelligent Materials and Structures, Berlin: Walter de Gruyter, 2016.
4.	Mazur M., Kucharikova L., Tillova E., Chalupova M. (2018): A Change of Mechanical
	Properties of the Self-hardening UNIFONT 90 Due to Temperature. 10th Conference on
	Terotechnology, Materials Research Proceedings nr 5. Materials Research Forum LLC.
5.	Mazur M., Ulewicz R. (2016): Analiza wytrzymałości materiałów konstrukcyjnych w
	produkcji naczep samochodowych. XLIV Szkoła Inżynierii Materiałowej, Wydawnictwo
	Naukowe AKAPIT
6.	Pietraszek J., Klimecka-Tatar D. (2013):Technical Aspects of Materials Quality. Oficyna
	Wydawnicza Stowarzyszenia Menedżerów Jakości i Produkcji. Częstochowa 2013.

TEACHERS (NAME, SURNAME, ADRES E-MAIL)

- 1. dr inż. Dorota Klimecka-Tatar, dorota.klimecka-tatar@wz.pcz.pl
- 2. dr inż. Magdalena Mazur magdalena.mazur@wz.pcz.pl
- 3. Prof. PCz dr hab. inż. Robert Ulewicz robert.ulewicz@wz.pcz.pl

MATRIX OF LEARNING OUTCOMES REALISATION

Learning outcome	Reference of given outcome to outcomes defined for whole program	Course aims	Course content	Teaching tools	Ways of assessment
	(PRK)				
EU1	K_W01, K_W02, K_W09, K_U01,	C1, C2	W 1-4	1, 2	F1, F2, P1
	K_U02, K_U04, K_U05, K_U07		C 1-3		
	K_U09, K_U11, K_K02		L 1-2		
EU2	K_W01, K_W02, K_W09, K_U01,	C2, C3	W 5-7	1, 3-5	F1, F2, P1
	K_U02, K_U04, K_U05, K_U07		C 2-4		
	K_U09, K_U11, K_K02		L 2-6		
EU3	K_W01, K_W02, K_W09, K_U01,	C2, C3	W 8-10	1, 3-5	F1, F2, P1
	K_U02, K_U04, K_U05, K_U07		C 5-7		
	K_U09, K_U11, K_K02		L 2-6		
EU4	K_W01, K_W02, K_W09, K_U01,	C2, C3	W 5-7	1, 3-5	F1, F2, P1
	K_U02, K_U04, K_U05, K_U07		C 2-4		
	K_U09, K_U11, K_K02		L 2-6		

FORM OF ASSESSMENT - DETAILS

	grade 2	grade 3	grade 4	grade 5
EU1	Student cannot divide	Student knows the	Student knows the	Student can define special
	the basic groups of	types of engineering	types of engineering	processes and discuss their
	engineering materials.	materials he or she	materials, can do the	specificities in detail,
		cannot properly	division, but cannot	referring to specific
		classify.	point to examples.	examples.
EU2	Student can not	Student is able to	Student can identify	Student is able to
	characterize groups of	characterize selected	and characterize	characterize and discuss in
	metallic materials,	groups of metallic,	groups of metallic,	detail the methods of
	ceramic and composite	ceramic and	ceramic and	quality control in selected
	polymers.	composite polymers.	composite materials	special processes.
EU3	Student does not know	Student knows only	Student knows the	Student knows the methods
	basic research methods	a few research	basic research	of quality control in
	in determining the	methods in	methods in	processes, can apply them
	properties of	determining the	determining the	and discuss them.
	engineering materials.	properties of	properties of	
		engineering	engineering	
		materials.	materials.	

Politechnika Częstochowska, Wydział Zarządzania

EU	Student cannot	Student can indicate	Student knows the	Student is able to properly
	characterize the physical	selected physical and	characteristic	and in detail characterize
	and mechanical	mechanical	physical and	the physical and
	properties of metallic,	properties of	mechanical	mechanical properties of
	polymeric ceramic and	metallic, polymeric	properties of	the mat. metallic,
	composite materials.	ceramic and	metallic, polymeric	polymeric ceramic and
		composite materials.	ceramic and	composite.
			composite materials.	

ADDITIONAL USEFUL INFORMATION ABOUT THE COURSE

- 1. Information where presentation of classes, instruction, subjects of seminars can be found, etc. presented to students during first classes, if required by the formula classes are sent electronically to the e-mail addresses of individual dean groups.
- 2. Information about the place of classes Information can be found on the website of the Faculty of Management.
- 3. Information about the timing of classes (day of the week / time) Information can be found on the website of the Faculty of Management
- 4. Information about the consultation (time + place) Information can be found on the website of the Faculty of Management

Coordinator