Course title:						
Hydrology						
Programme:		Code:				
Environmental Engineering		5.6				
Type of course:	Course level:	Semester:				
Elective subject, module 5,	I degree	II				
block IIA						
Form of classes:	Number of hours per	Credit points:				
Lecture, laboratory	week/ meeting :	2				
•	1L, 1Lab					
Education profile:	•	Course language:				
General academic studies		English				
Enrolment: yes/ no						

GUIDE TO THE SUBJECT

I. COURSE CHART

COURSE OBJECTIVES

- C.1. Transferring the knowledge of the general characteristics of hydrological processes that form the main components of the water cycle in nature and their impact on engineering objects
- C.2. Instructing the student the methods of determining the fundamental hydrological properties and acquiring the ability to use hydrological data in environmental engineering

PRELIMINARY COURSE REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Basic knowledge of chemistry, physics, dynamic geology and mineralogy
- 2. Ability to carry out engineering calculations
- 3. Ability to use literature sources individually

LEARNING OUTCOMES

- EK 1 -knows the basic phenomena and hydrological processes occurring in geoecosystems
- EK 2-is able to characterize the elements of hydrological systems and forecast extreme hydrological phenomena
- EK 3 can determine the basic parameters describing the hydrogeological properties and properly interpret the results of the research

COURSE CONTENT

Form of classes - lectures	Hours
Circulation of water in nature - water circulation, size and distribution of	
precipitation, evaporation, precipitation measurements. Water balance and	2
its components	
Surface waters. Watercourse and drainage basin. Basin characteristics	1
States and flows of water in rivers - measurements and observations of	
water states, hydrological curves, states and flows, measurements of flow	3
velocities, determination of flow volumes	
Probability and hydrological forecasts and floods	2
Underground waters - origin, properties, chemical composition, aeration	
and saturation zone waters. Groundwater level - graphical representation of	2
the shape and descent of the groundwater level	
Groundwater sources - types and productivity. Possibilities of exploitation	2
of groundwater	Z
Fundamental laws of underground water movement	2
Final test	1
Form of classes - laboratory	Hours
Introduction to the subject: health and safety training, discussion on the	
conditions and requirements of passing the laboratory, presentation of the	1
subject and scope of the course	
Determination of the filtration coefficient using an ITB-ZW-K ₂ apparatus	2
Determination of the suction coefficient	2
Determination of the smell of underground water	1
Granulometric analysis of soils to determine their hydrogeological	2
properties	Z
Determination of the filtration coefficient using Kamienski tube	2
Determination of the permeability coefficient of rocks based on the	2
filtration coefficient	Δ
Final test	1
Working out the lacking exercises	2

COURSE STUDY METHODS

1. multimedia presentation
2. classic blackboard/whiteboard
3. lab stands
4. instructions to lab stands

METHODS OF ASSESMENT (F - formative; S - summative)

F1. – Evaluation of self preparation for classes
F2. – Evaluation of group work in laboratory exercises
F3. – Evaluation of the correctness of calculations and laboratory reports
S1. – Final test of the theory given during lectures
S2. – Final test of the theory related to the laboratory exercises

STUDENT WORKLOAD

Form of activity	Workload (hours)	
Participation in lectures	15 h	

Participation in classes	_		
Laboratory	15 h		
Participation in project classes	_		
Participation in seminar	_		
Preparation course on e-learning	_		
Test	2 h		
Entrance test for laboratory classes	1 h		
Project's defence	_		
Exam	_		
Consultation hours	2 h		
DIRECT TEACHING, hours/ ECTS	35 h / 1,4 ECTS		
Preparation for tutorials	_		
Preparation for laboratories	5 h		
Preparation for projects	—		
Preparation for seminars	—		
Preparation for e-learning classes	—		
Participation in e-learning classes	—		
Working on project - Sporządzenie sprawozdań z ćwiczeń			
laboratoryjnych	5 h		
Preparation for tests	5 h		
Preparation for exam	_		
SELF-STUDY, hours/ ECTS	15 h / 0,6 ECTS		
TOTAL (hours)	Σ 50 h		
TOTAL ECTS	2 ECTS		

PRIMARY AND SUPPLEMENTARY TEXTBOOKS

Fetter C.W., Applied Hydrogeology, Prentice Hal, Inc, New Jersey 2001
Ward A. D., Trimble S. W., Burckhard S. R., Lyon J.G., Environmental Hydrology, CRC
Press, Taylor & Francis Group, 2016 (Electronic edition)
Dingman S. L., Physical Hydrology, Waveland Press, 2015 (Electronic edition)
Singh V. P., Elementary Hydrology, Prentice Hall of India, Nev Delhi 1994
Manning J., Applied Principles of Hydrology, Waveland Press, Inc, 2016
Eagleson P.S., Dynamic Hydrology, McGraw-Hill, 1970
Todd D. K., Mays L. W., Groundwater Hydrology, John Wiley & Sons, Inc, Printed in the
United States of America 2005
Maidment D.R., Handbook of Hydrology, McGraw-Hill Education, 1993
Chapra S.C., Surface Water-Quality Modeling, McGraw-Hill, New York 1997
Applegate G., The Complete Book of Dowsing: The Definitive Guide to Finding
Underground Water Hardcover, Vega Books, London 2002
Younger P. L., Groundwater in the Environment: An Introduction, Wiley-Blackwell, 2006

SUBJECT COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

1. Dr inż. Beata Jabłońska, bjablonska@is.pcz.czest.pl

NAME OF LECTURER (s) (NAME, SURNAME, E-MAIL ADDRESS)

1. Dr inż. Beata Jabłońska, bjablonska@is.pcz.czest.pl

Learning outcome	In relation to the learning outcomes specified for the field of study	Course objectives	Course content	Course study methods	Methods of assesment
EK 1	K_W05	C1	Lecture/ laboratory	1, 2	F1, P1
EK 2	K_U06	C1, C2	Lecture/ laboratory	1, 2	F1, P1
EK 3	K_U06	C2	Laboratory	2, 3, 4	F1, F2, F3, P2

II. OTHER USEFUL INFORMATION

- 1. All the information on the class schedule is posted on the student information board and online at: <u>www.is.pcz.pl</u>
- 2. The information about the consultation hours is provided to students on the first class meeting and posted online at the Faculty internet web
- 3. The information on course completion and grade is provided to students on the first class meeting.