Module title			
Automatic Control and Robots			
Field of study:	Type of study:	Course code:	
Mechanical Engineering	stacjonarne		
Course:	Degree:	Year: II	
	l stopnia	Semester: IV	
Type of classes:	Hours per week:	No of ECTS credits:	
Lecture, laboratory	2L, 2Lab	4 ECTS	

Module Desription

Targets

- T1. Introducing students to the fundamentals of robotics and industrial automation.
- T2. Introducing students with methods of kinematics analysis, analysis of trajectories and working space of manipulators and robots.
- T3. Students acquire the ability to program the automatic control units.

PREREQUISITES & ADDITIONAL REQUIREMENTS

- 1. Knowledge of physics and electronics.
- 2. Knowledge of safety rules during use machinery and technological equipment.
- 3. Ability to perform mathematical operations to solve the task.
- 4. Ability to use various sources of information including instructions and technical documentation.
- 5. The ability to work independently and in a group.
- 6. Ability to correctly interpret and present own actions.

LEARNING OUTCOMES

- LO 1 Can identify DH parameters of robots and manipulators,
- LO 2 Knows how to solve the task of simple and inverse kinematics,
- LO 3 Knows the construction and operation principles of the PLC, and its applicability in automation systems,
- LO 4 Can program the PLC in the basic scope in LD language,
- LO 5 Knows the basic kinematic pairs and is able to build a digital model of a robot structure,
- LO 6 Can discuss the results and make conclusions

MODULE CONTENT

LECTURES	hours
L 1,2 – Fundamentals of analog and digital technology	
L 3,4 – Basic sensors and actuators in automation systems	
L 5,6 - Construction, principle of operation, selection and applications of PLCs	
L 7,8 – Drain / source IN/OUT in PLC	
L 9,10 – Operations in GX Developer environment	
L 11,12 – Basic programming functions of PLCs	
L 13,18 – Programming of timers, counters. Data acquisition and internal data transfer	
L 19,20 – Arithmetic operations	
L 21, - Construction, principle of operation of robots and manipulators	
L 22 – DH parameters identification of manipulator and robot.	
L 23,24 – Catia Dmu Kinematics - fundamentals	
L 25,26 – Digital mockups	
L 27,30 – Structures and possible robot applications	
LABORATORIES	
L 1, 2 – Operations in GX Developer environment	
L 3, 4 – Basic programming functions of PLCs	
L 5, 6 – Programming of timers, counters	
L7 – Data Acquisition and internal data transfer	
L 8, 9 – Fundamentals of solids and assemblies DS. CATIA.	
L 10, 11 – Dmu Kinematics –digital mockups	
L 12, 13 – Modeling of various kinematic pairs	
L 14, 15 – Modeling of robotic structures	

TEACHING TOOLS

1. – Lecture using multimedia presentations
2. – FX3U controllers with control panels
3. – Computer workstations with software

TEACHERS

1. Dr inż. Michał Tagowski, michalt@itm.pcz.pl

SOURCE LITERATURE

- 1. J.J. Craig: Introduction to Robotics. Pearson 2005
- 2. Siciliano Bruno, Khatib Oussama: Handbook of Robotics. Springer 2008.
- 3. Reza N. Nazar: Theory of Applied Robotics: Kinematics, Dynamics and Control. Springer 2007.
- 4. Shimon Y. Nof: Handbook of Industrial Robotics. John Wiley & Sons 1999.
- 5. Kyle Johns, Trevor Taylor: Professional Microsoft Robotics Developer Studio. Wrox, Wiley Publishing Inc. 2008.
- 6. Thomas R. Kurfess: Robotics and Automation Handbook. CRC Press 2005.
- 7. Hough Jack: Automating Manufacturing Systems with PLCs. Hugh Jack 2004.
- 8. FX3u Documentation
- 9. Catia V5 documentation