Syllabus

Course title:		
	Enzymology	
	Enzymologia	
		I
Programme:		Code:
Biotechnology		5.8
Type of course:	Course level:	Semester:
elective	first cycle studies	III
Form of classes:	Number of hours per week/meeting:	Credit points:
lectures, lab course	2L, 2Lab	3 ECTS
Education profile:		Course language:
General academic		English
Enrolment: yes/ no		

GUIDE TO THE SUBJECT

I. COURSE CHART

COURSE OBJECTIVES

- C.1. Presentation of knowledge about the structure/function relationships in biocatalysed reactions
- **C.2.** Presentation of possible catalytic mechanisms of given reaction types and strategies for the analysis of kinetic mechanisms of catalysed reactions
- **C.3.** Provide students with knowledge about the use of enzymes in industrial and environmental processes

PRELIMINARY COURSE REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- **1**. Knowledge of the basics of chemistry
- **2**. Knowledge of the basics of biology
- **3.** Knowledge of the basics of microbiology

LEARNING OUTCOMES

- **EK 1** The student after completed course knowns the structure/function relationships in biocatalysed reactions
- **EK 2** Student is able to predict possible catalytic mechnisms of given reaction types and to present strategies for the analysis of kinetic mechanisms of catalysed reactions
- **EK 3** Student is able to account for industrial applications of biocatalysis

COURSE CONTENT

Form of classes - lectures	Hours
Introduction to enzymology; catalysts and catalysts	6

Enzyme specificity and catalytic strategies	4
Classification of enzymes, review of enzyme classes	4
Kinetics of enzymatic reactions	4
Inhibition of enzymes	2
Regulation of enzyme activity	2
Enzymes in various industries	6
Final test	2
Form of classes - laboratory	Hours
Organizational classes, working principles in the laboratory, basic	2
equipment and their operation, laboratory procedures	
Isolation and purification of enzymes	4
Enzymatic reactions	12
Enzyme activity	6
The hyperbolic kinetics of enzymatic reactions, enzyme inhibition,	4
graphical determination of parameters of enzymatic reactions, enzyme	
units	
Passing reports, passing the laboratories, assignment	2

COURSE STUDY METHODS

COCKDE STOD I METHODS		
1. blackboard, interactive whiteboard		
2. multimedia presentation		
3. Performing laboratory experiments		

METHODS OF ASSESMENT (F - formative; S - summative)

F1. Assessment of self-preparation for classes
F2. Evaluation of laboratory classes
P1. A final test, including lecture material and laboratory classes
P2. Tests allowing to the laboratory classes
P3. Evaluation of the results of laboratoryclasses

STUDENT	WORKLOAD
---------	----------

Form of activity	Workload (hours)
Participation in lectures	28 h
Participation in classes	- h
Laboratory	30 h
Participation in project classes	- h
Participation in seminar	- h
Preparation course on e-learning	- h
Test	2 h

Entrance test for laboratory classes	6 h
Project's defence	- h
Exam	- h
Consultation hours	8 h
DIRECT TEACHING, hours/ ECTS	74 h / 2 ECTS
Preparation for tutorials	h
Preparation for laboratories	- 11
Preparation for projects	15 h
Prenaration for seminars	- h
Proparation for a logrning classes	- h
Destination in a learning classes	- h
Participation in e-learning classes	- h
Working on project	- h
Preparation for tests	20 h
Preparation for exam	20 h
	- 11
SELF-STUDY, hours/ ECTS	35 h / 1 ECTS
TOTAL (hours)	Σ 109 h
TOTAL ECTS	3 ECTS

PRIMARY AND SUPPLEMENTARY TEXTBOOKS

Frey,, P.A. Hegeman,, A.D. Enzymatic Reaction Mechanisms
Oxford University Press, 2007
Introduction to enzyme and coenzyme chemistry / Tim Bugg.
Enzyme Kinetics and Mechanim / Paul Cook and WW Cleland.
Enzyme kinetics : behavior and analysis of rapid equilibrium and steady-state enzyme
systems/ Irwin Segel
Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding /
Alan Fersht.
Online access books: 1. Enzyme kinetics and mechanisms / Kenneth B. Taylor.
2. Comprehensive enzyme kinetics / Vladimir Leskovac.
3. Computational approaches to biochemical reactivity / edited by Gébor NéraySzabó and

3. Computational approaches to biochemical reactivity / edited by Gábor NáraySzabó and Arieh Warshel.

4. Enzymatic reaction mechanisms/ Perry A. Frey and Adrian D. Hegeman

SUBJECT COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

1. dr Anna Grobelak, agrobelak@is.pcz.czest.pl

NAME OF LECTURER (s) (NAME, SURNAME, E-MAIL ADDRESS)

dr Anna Grobelak, agrobelak@is.pcz.czest.pl

Learning outcome	In relation to the learning outcomes specified for the field of study	Course objectives	Course content	Course study methods	Methods of assesment
EK1	K_W01, K_W02, K_W05, K_U06, K_K01	C1., C2., C3.	lectures/lab.	1, 2, 3	F1., F2, P1., P2., P3.
EK2	K_W01, K_W02, K_W05, K_U06, K_U07, K_K01	C1., C2., C3.	lectures/lab	1, 2, 3	F1., F2, P1., P2., P3.
ЕКЗ	K_W05, K_W12, K_U06,K_U07, K_K01	C1., C2., C3.	lectures/lab	1, 2, 3,	F1., F2, P1., P2., P3.

II. OTHER USEFUL INFORMATION

- 1. All the information on the class schedule is posted on the student information board and online at: <u>www.is.pcz.pl</u>
- 2. The information about the consultation hours is provided to students on the first class meeting and posted online at website of *Faculty of Infrastructure and Environment*
- 3. The information on course completion and grade is provided to students on the first class meeting.